Spaces:
Sleeping
Sleeping
import copy | |
import glob | |
import inspect | |
import json | |
import os | |
import random | |
import sys | |
import re | |
from typing import Dict, List, Any, Callable, Tuple, TextIO | |
import black | |
from comfyui_to_python_utils import import_custom_nodes, find_path, add_comfyui_directory_to_sys_path, add_extra_model_paths,\ | |
get_value_at_index, parse_arg, save_image_wrapper | |
PACKAGED_FUNCTIONS = [ | |
get_value_at_index, | |
find_path, | |
add_comfyui_directory_to_sys_path, | |
add_extra_model_paths, | |
import_custom_nodes, | |
save_image_wrapper, | |
parse_arg | |
] | |
add_comfyui_directory_to_sys_path() | |
from nodes import NODE_CLASS_MAPPINGS | |
import nodes | |
class FileHandler: | |
"""Handles reading and writing files. | |
This class provides methods to read JSON data from an input file and write code to an output file (either file-like objects or string paths). | |
""" | |
def read_json_file(file_path: str | TextIO, encoding: str = "utf-8") -> dict: | |
""" | |
Reads a JSON file and returns its contents as a dictionary. | |
Args: | |
file_path (str): The path to the JSON file. | |
Returns: | |
dict: The contents of the JSON file as a dictionary. | |
Raises: | |
FileNotFoundError: If the file is not found, it lists all JSON files in the directory of the file path. | |
ValueError: If the file is not a valid JSON. | |
""" | |
if hasattr(file_path, "read"): return json.load(file_path) | |
with open(file_path, 'r', encoding="utf-8") as file: | |
data = json.load(file) | |
return data | |
def write_code_to_file(file_path: str | TextIO, code: str) -> None: | |
"""Write the specified code to a Python file. | |
Args: | |
file_path (str): The path to the Python file. | |
code (str): The code to write to the file. | |
Returns: | |
None | |
""" | |
if isinstance(file_path, str): | |
# Extract directory from the filename | |
directory = os.path.dirname(file_path) | |
# If the directory does not exist, create it | |
if directory and not os.path.exists(directory): | |
os.makedirs(directory) | |
# Save the code to a .py file | |
with open(file_path, 'w', encoding="utf-8") as file: | |
file.write(code) | |
else: | |
file_path.write(code) | |
class LoadOrderDeterminer: | |
"""Determine the load order of each key in the provided dictionary. | |
This class places the nodes without node dependencies first, then ensures that any node whose | |
result is used in another node will be added to the list in the order it should be executed. | |
Attributes: | |
data (Dict): The dictionary for which to determine the load order. | |
node_class_mappings (Dict): Mappings of node classes. | |
""" | |
def __init__(self, data: Dict, node_class_mappings: Dict): | |
"""Initialize the LoadOrderDeterminer with the given data and node class mappings. | |
Args: | |
data (Dict): The dictionary for which to determine the load order. | |
node_class_mappings (Dict): Mappings of node classes. | |
""" | |
self.data = data | |
self.node_class_mappings = node_class_mappings | |
self.visited = {} | |
self.load_order = [] | |
self.is_special_function = False | |
def determine_load_order(self) -> List[Tuple[str, Dict, bool]]: | |
"""Determine the load order for the given data. | |
Returns: | |
List[Tuple[str, Dict, bool]]: A list of tuples representing the load order. | |
""" | |
self._load_special_functions_first() | |
self.is_special_function = False | |
for key in self.data: | |
if key not in self.visited: | |
self._dfs(key) | |
return self.load_order | |
def _dfs(self, key: str) -> None: | |
"""Depth-First Search function to determine the load order. | |
Args: | |
key (str): The key from which to start the DFS. | |
Returns: | |
None | |
""" | |
# Mark the node as visited. | |
self.visited[key] = True | |
inputs = self.data[key]['inputs'] | |
# Loop over each input key. | |
for input_key, val in inputs.items(): | |
# If the value is a list and the first item in the list has not been visited yet, | |
# then recursively apply DFS on the dependency. | |
if isinstance(val, list) and val[0] not in self.visited: | |
self._dfs(val[0]) | |
# Add the key and its corresponding data to the load order list. | |
self.load_order.append((key, self.data[key], self.is_special_function)) | |
def _load_special_functions_first(self) -> None: | |
"""Load functions without dependencies, loaderes, and encoders first. | |
Returns: | |
None | |
""" | |
# Iterate over each key in the data to check for loader keys. | |
for key in self.data: | |
class_def = self.node_class_mappings[self.data[key]['class_type']]() | |
# Check if the class is a loader class or meets specific conditions. | |
if (class_def.CATEGORY == 'loaders' or | |
class_def.FUNCTION in ['encode'] or | |
not any(isinstance(val, list) for val in self.data[key]['inputs'].values())): | |
self.is_special_function = True | |
# If the key has not been visited, perform a DFS from that key. | |
if key not in self.visited: | |
self._dfs(key) | |
class CodeGenerator: | |
"""Generates Python code for a workflow based on the load order. | |
Attributes: | |
node_class_mappings (Dict): Mappings of node classes. | |
base_node_class_mappings (Dict): Base mappings of node classes. | |
""" | |
def __init__(self, node_class_mappings: Dict, base_node_class_mappings: Dict, prompt: Dict): | |
"""Initialize the CodeGenerator with given node class mappings. | |
Args: | |
node_class_mappings (Dict): Mappings of node classes. | |
base_node_class_mappings (Dict): Base mappings of node classes. | |
""" | |
self.node_class_mappings = node_class_mappings | |
self.base_node_class_mappings = base_node_class_mappings | |
self.prompt = prompt | |
def can_be_imported(self, import_name: str): | |
if import_name in self.base_node_class_mappings.keys(): | |
if getattr(nodes, import_name, None) is not None: | |
return True | |
return False | |
def generate_workflow(self, load_order: List, queue_size: int = 1) -> str: | |
"""Generate the execution code based on the load order. | |
Args: | |
load_order (List): A list of tuples representing the load order. | |
filename (str): The name of the Python file to which the code should be saved. | |
Defaults to 'generated_code_workflow.py'. | |
queue_size (int): The number of photos that will be created by the script. | |
Returns: | |
str: Generated execution code as a string. | |
""" | |
include_prompt_data = False | |
# Create the necessary data structures to hold imports and generated code | |
import_statements, executed_variables, arg_inputs, special_functions_code, code = set(['NODE_CLASS_MAPPINGS']), {}, [], [], [] | |
# This dictionary will store the names of the objects that we have already initialized | |
initialized_objects = {} | |
custom_nodes = False | |
# Loop over each dictionary in the load order list | |
for idx, data, is_special_function in load_order: | |
# Generate class definition and inputs from the data | |
inputs, class_type = data['inputs'], data['class_type'] | |
input_types = self.node_class_mappings[class_type].INPUT_TYPES() | |
missing = [] | |
for i, input in enumerate(input_types.get("required", {}).keys()): | |
if input not in inputs: | |
input_var = f"{input}{len(arg_inputs)+1}" | |
arg_inputs.append((input_var, f"Argument {i}, input `{input}` for node \\\"{data.get('_meta', {}).get('title', class_type)}\\\" id {idx}")) | |
print("WARNING: Missing required input", input, "for", class_type) | |
print("That will be CLI arg " + str(len(arg_inputs))) | |
missing.append((input, input_var, len(arg_inputs))) | |
class_def = self.node_class_mappings[class_type]() | |
# If the class hasn't been initialized yet, initialize it and generate the import statements | |
if class_type not in initialized_objects: | |
# No need to use preview image nodes since we are executing the script in a terminal | |
if class_type == 'PreviewImage': | |
continue | |
class_type, import_statement, class_code = self.get_class_info(class_type) | |
initialized_objects[class_type] = self.clean_variable_name(class_type) | |
if self.can_be_imported(class_type): | |
import_statements.add(import_statement) | |
if class_type not in self.base_node_class_mappings.keys(): | |
custom_nodes = True | |
special_functions_code.append(class_code) | |
# Get all possible parameters for class_def | |
class_def_params = self.get_function_parameters(getattr(class_def, class_def.FUNCTION)) | |
no_params = class_def_params is None | |
# Remove any keyword arguments from **inputs if they are not in class_def_params | |
inputs = {key: value for key, value in inputs.items() if no_params or key in class_def_params} | |
for input, input_var, arg in missing: | |
inputs[input] = {"variable_name": f"parse_arg(args." + input_var + ")"} | |
# Deal with hidden variables | |
if class_def_params is not None: | |
if 'unique_id' in class_def_params: | |
inputs['unique_id'] = random.randint(1, 2**64) | |
if 'prompt' in class_def_params: | |
inputs["prompt"] = {"variable_name": "PROMPT_DATA"} | |
include_prompt_data = True | |
# Create executed variable and generate code | |
executed_variables[idx] = f'{self.clean_variable_name(class_type)}_{idx}' | |
inputs = self.update_inputs(inputs, executed_variables) | |
if class_type == 'SaveImage': | |
save_code = self.create_function_call_code(initialized_objects[class_type], class_def.FUNCTION, executed_variables[idx], is_special_function, **inputs).strip() | |
return_code = ['if __name__ != "__main__":', '\treturn dict(' + ', '.join(self.format_arg(key, value) for key, value in inputs.items()) + ')', 'else:', '\t' + save_code] | |
if is_special_function: | |
special_functions_code.extend(return_code) | |
else: | |
code.extend(return_code) ### This should presumably NEVER occur for a valid workflow | |
else: | |
if is_special_function: | |
special_functions_code.append(self.create_function_call_code(initialized_objects[class_type], class_def.FUNCTION, executed_variables[idx], is_special_function, **inputs)) | |
else: | |
code.append(self.create_function_call_code(initialized_objects[class_type], class_def.FUNCTION, executed_variables[idx], is_special_function, **inputs)) | |
# Generate final code by combining imports and code, and wrap them in a main function | |
final_code = self.assemble_python_code(import_statements, special_functions_code, arg_inputs, code, queue_size, custom_nodes, include_prompt_data) | |
return final_code | |
def create_function_call_code(self, obj_name: str, func: str, variable_name: str, is_special_function: bool, **kwargs) -> str: | |
"""Generate Python code for a function call. | |
Args: | |
obj_name (str): The name of the initialized object. | |
func (str): The function to be called. | |
variable_name (str): The name of the variable that the function result should be assigned to. | |
is_special_function (bool): Determines the code indentation. | |
**kwargs: The keyword arguments for the function. | |
Returns: | |
str: The generated Python code. | |
""" | |
args = ', '.join(self.format_arg(key, value) for key, value in kwargs.items()) | |
# Generate the Python code | |
code = f'{variable_name} = {obj_name}.{func}({args})\n' | |
return code | |
def format_arg(self, key: str, value: any) -> str: | |
"""Formats arguments based on key and value. | |
Args: | |
key (str): Argument key. | |
value (any): Argument value. | |
Returns: | |
str: Formatted argument as a string. | |
""" | |
# Randomize the seed if it's a set value | |
if isinstance(value, int) and (key == 'noise_seed' or key == 'seed'): | |
return f'{key}=random.randint(1, 2**64)' | |
elif isinstance(value, str): | |
return f'{key}={repr(value)}' | |
elif isinstance(value, dict) and 'variable_name' in value: | |
return f'{key}={value["variable_name"]}' | |
return f'{key}={value}' | |
def assemble_python_code(self, import_statements: set, special_functions_code: List[str], arg_inputs: List[Tuple[str, str]], code: List[str], queue_size: int, custom_nodes=False, include_prompt_data=True) -> str: | |
"""Generates the final code string. | |
Args: | |
import_statements (set): A set of unique import statements. | |
speical_functions_code (List[str]): A list of special functions code strings. | |
code (List[str]): A list of code strings. | |
queue_size (int): Number of photos that will be generated by the script. | |
custom_nodes (bool): Whether to include custom nodes in the code. | |
Returns: | |
str: Generated final code as a string. | |
""" | |
# Get the source code of the utils functions as a string | |
func_strings = [] | |
for func in PACKAGED_FUNCTIONS: | |
func_strings.append(f'\n{inspect.getsource(func)}') | |
argparse_code = [f'parser = argparse.ArgumentParser(description="A converted ComfyUI workflow. Required inputs listed below. Values passed should be valid JSON (assumes string if not valid JSON).")'] | |
for i, (input_name, arg_desc) in enumerate(arg_inputs): | |
argparse_code.append(f'parser.add_argument("{input_name}", help="{arg_desc} (autogenerated)")\n') | |
argparse_code.append(f'parser.add_argument("--queue-size", "-q", type=int, default={queue_size}, help="How many times the workflow will be executed (default: {queue_size})")\n') | |
argparse_code.append('parser.add_argument("--comfyui-directory", "-c", default=None, help="Where to look for ComfyUI (default: current directory)")\n') | |
argparse_code.append(f'parser.add_argument("--output", "-o", default=None, help="The location to save the output image. Either a file path, a directory, or - for stdout (default: the ComfyUI output directory)")\n') | |
argparse_code.append(f'parser.add_argument("--disable-metadata", action="store_true", help="Disables writing workflow metadata to the outputs")\n') | |
argparse_code.append(''' | |
comfy_args = [sys.argv[0]] | |
if __name__ == "__main__" and "--" in sys.argv: | |
idx = sys.argv.index("--") | |
comfy_args += sys.argv[idx+1:] | |
sys.argv = sys.argv[:idx] | |
args = None | |
if __name__ == "__main__": | |
args = parser.parse_args() | |
sys.argv = comfy_args | |
if args is not None and args.output is not None and args.output == "-": | |
ctx = contextlib.redirect_stdout(sys.stderr) | |
else: | |
ctx = contextlib.nullcontext() | |
''') | |
# Define static import statements required for the script | |
static_imports = ['import os', 'import random', 'import sys', 'import json', 'import argparse', 'import contextlib', 'from typing import Sequence, Mapping, Any, Union', | |
'import torch'] + func_strings + argparse_code | |
if include_prompt_data: | |
static_imports.append(f'PROMPT_DATA = json.loads({repr(json.dumps(self.prompt))})') | |
# Check if custom nodes should be included | |
if custom_nodes: | |
static_imports.append(f'\n{inspect.getsource(import_custom_nodes)}\n') | |
newline_doubletab = '\n\t\t' # You can't use backslashes in f-strings | |
newline_tripletab = '\n\t\t\t' # Same | |
# Assemble the main function code, including custom nodes if applicable | |
main_function_code = f""" | |
_custom_nodes_imported = {str(not custom_nodes)} | |
_custom_path_added = False | |
def main(*func_args, **func_kwargs): | |
global args, _custom_nodes_imported, _custom_path_added | |
if __name__ == "__main__": | |
if args is None: | |
args = parser.parse_args() | |
else: | |
defaults = dict((arg, parser.get_default(arg)) for arg in ['queue_size', 'comfyui_directory', 'output', 'disable_metadata']) | |
ordered_args = dict(zip({[input_name for input_name, _ in arg_inputs]}, func_args)) | |
all_args = dict() | |
all_args.update(defaults) | |
all_args.update(ordered_args) | |
all_args.update(func_kwargs) | |
args = argparse.Namespace(**all_args) | |
with ctx: | |
if not _custom_path_added: | |
add_comfyui_directory_to_sys_path() | |
add_extra_model_paths() | |
_custom_path_added = True | |
if not _custom_nodes_imported: | |
import_custom_nodes() | |
_custom_nodes_imported = True | |
from nodes import {', '.join([class_name for class_name in import_statements])} | |
with torch.inference_mode(), ctx: | |
{newline_doubletab.join(special_functions_code)} | |
for q in range(args.queue_size): | |
{newline_tripletab.join(code)}""".replace(" ", "\t") | |
# Concatenate all parts to form the final code | |
final_code = '\n'.join(static_imports + [main_function_code, '', 'if __name__ == "__main__":', '\tmain()']) | |
# Format the final code according to PEP 8 using the Black library | |
final_code = black.format_str(final_code, mode=black.Mode()) | |
return final_code | |
def get_class_info(self, class_type: str) -> Tuple[str, str, str]: | |
"""Generates and returns necessary information about class type. | |
Args: | |
class_type (str): Class type. | |
Returns: | |
Tuple[str, str, str]: Updated class type, import statement string, class initialization code. | |
""" | |
import_statement = class_type | |
variable_name = self.clean_variable_name(class_type) | |
before = "" | |
after = "" | |
if class_type.strip() == 'SaveImage': | |
before = 'save_image_wrapper(' + 'ctx, ' | |
after = ')' | |
if self.can_be_imported(class_type): | |
class_code = f'{variable_name} = {before}{class_type.strip()}{after}()' | |
else: | |
class_code = f'{variable_name} = {before}NODE_CLASS_MAPPINGS["{class_type}"]{after}()' | |
return class_type, import_statement, class_code | |
def clean_variable_name(class_type: str) -> str: | |
""" | |
Remove any characters from variable name that could cause errors running the Python script. | |
Args: | |
class_type (str): Class type. | |
Returns: | |
str: Cleaned variable name with no special characters or spaces | |
""" | |
# Convert to lowercase and replace spaces with underscores | |
clean_name = class_type.lower().strip().replace("-", "_").replace(" ", "_") | |
# Remove characters that are not letters, numbers, or underscores | |
clean_name = re.sub(r'[^a-z0-9_]', '', clean_name) | |
# Ensure that it doesn't start with a number | |
if clean_name[0].isdigit(): | |
clean_name = "_" + clean_name | |
return clean_name | |
def get_function_parameters(self, func: Callable) -> List: | |
"""Get the names of a function's parameters. | |
Args: | |
func (Callable): The function whose parameters we want to inspect. | |
Returns: | |
List: A list containing the names of the function's parameters. | |
""" | |
signature = inspect.signature(func) | |
parameters = {name: param.default if param.default != param.empty else None | |
for name, param in signature.parameters.items()} | |
catch_all = any(param.kind == inspect.Parameter.VAR_KEYWORD for param in signature.parameters.values()) | |
return list(parameters.keys()) if not catch_all else None | |
def update_inputs(self, inputs: Dict, executed_variables: Dict) -> Dict: | |
"""Update inputs based on the executed variables. | |
Args: | |
inputs (Dict): Inputs dictionary to update. | |
executed_variables (Dict): Dictionary storing executed variable names. | |
Returns: | |
Dict: Updated inputs dictionary. | |
""" | |
for key in inputs.keys(): | |
if isinstance(inputs[key], list) and inputs[key][0] in executed_variables.keys(): | |
inputs[key] = {'variable_name': f"get_value_at_index({executed_variables[inputs[key][0]]}, {inputs[key][1]})"} | |
return inputs | |
class ComfyUItoPython: | |
"""Main workflow to generate Python code from a workflow_api.json file. | |
Attributes: | |
input_file (str): Path to the input JSON file. | |
output_file (str): Path to the output Python file. | |
queue_size (int): The number of photos that will be created by the script. | |
node_class_mappings (Dict): Mappings of node classes. | |
base_node_class_mappings (Dict): Base mappings of node classes. | |
""" | |
def __init__(self, workflow: str = "", input_file: str = "", output_file: (str | TextIO) = "", queue_size: int = 1, node_class_mappings: Dict = NODE_CLASS_MAPPINGS, | |
needs_init_custom_nodes: bool = False): | |
"""Initialize the ComfyUItoPython class with the given parameters. Exactly one of workflow or input_file must be specified. | |
Args: | |
workflow (str): The workflow's JSON. | |
input_file (str): Path to the input JSON file. | |
output_file (str | TextIO): Path to the output file or a file-like object. | |
queue_size (int): The number of times a workflow will be executed by the script. Defaults to 1. | |
node_class_mappings (Dict): Mappings of node classes. Defaults to NODE_CLASS_MAPPINGS. | |
needs_init_custom_nodes (bool): Whether to initialize custom nodes. Defaults to False. | |
""" | |
if input_file and workflow: | |
raise ValueError("Can't provide both input_file and workflow") | |
elif not input_file and not workflow: | |
raise ValueError("Needs input_file or workflow") | |
if not output_file: | |
raise ValueError("Needs output_file") | |
self.workflow = workflow | |
self.input_file = input_file | |
self.output_file = output_file | |
self.queue_size = queue_size | |
self.node_class_mappings = node_class_mappings | |
self.needs_init_custom_nodes = needs_init_custom_nodes | |
self.base_node_class_mappings = copy.deepcopy(self.node_class_mappings) | |
self.execute() | |
def execute(self): | |
"""Execute the main workflow to generate Python code. | |
Returns: | |
None | |
""" | |
# Step 1: Import all custom nodes if we need to | |
if self.needs_init_custom_nodes: | |
import_custom_nodes() | |
else: | |
# If they're already imported, we don't know which nodes are custom nodes, so we need to import all of them | |
self.base_node_class_mappings = {} | |
# Step 2: Read JSON data from the input file | |
if self.input_file: | |
data = FileHandler.read_json_file(self.input_file) | |
else: | |
data = json.loads(self.workflow) | |
# Step 3: Determine the load order | |
load_order_determiner = LoadOrderDeterminer(data, self.node_class_mappings) | |
load_order = load_order_determiner.determine_load_order() | |
# Step 4: Generate the workflow code | |
code_generator = CodeGenerator(self.node_class_mappings, self.base_node_class_mappings, data) | |
generated_code = code_generator.generate_workflow(load_order, queue_size=self.queue_size) | |
# Step 5: Write the generated code to a file | |
FileHandler.write_code_to_file(self.output_file, generated_code) | |
print(f"Code successfully generated and written to {self.output_file}") | |
if __name__ == '__main__': | |
import argparse | |
ap = argparse.ArgumentParser(description="Converts a ComfyUI-style workflow.json file to a Python file. Must have been exported with API calls") | |
ap.add_argument("workflow", help="The workflow.json file to convert") | |
ap.add_argument("--output", "-o", default=None, help="The output file (defaults to [input file].py)") | |
ap.add_argument("--queue-size", "-q", default=1, type=int, help="The queue size per run") | |
ap.add_argument("--yes", "--overwrite", "-y", action="store_true", help="Overwrite the output file if it exists") | |
args = ap.parse_args() | |
output = args.output if args.output else args.workflow + ".py" | |
if os.path.isfile(output): | |
if not args.yes: | |
if input("Are you sure you want to overwrite " + output + "?\nY/n").strip().lower() not in ("y", "yes"): | |
print("Exiting.") | |
sys.exit(1) | |
# Convert ComfyUI workflow to Python | |
ComfyUItoPython(input_file=args.workflow, output_file=output, queue_size=args.queue_size, needs_init_custom_nodes=True) | |