Spaces:
Sleeping
Sleeping
from math import ceil, sqrt | |
from typing import cast | |
import torch | |
import torchvision.transforms.functional as TF | |
from PIL import Image | |
from ..utils import hex_to_rgb, log, pil2tensor, tensor2pil | |
class MTB_TransformImage: | |
"""Save torch tensors (image, mask or latent) to disk, useful to debug things outside comfy | |
it return a tensor representing the transformed images with the same shape as the input tensor | |
""" | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"x": ( | |
"FLOAT", | |
{"default": 0, "step": 1, "min": -4096, "max": 4096}, | |
), | |
"y": ( | |
"FLOAT", | |
{"default": 0, "step": 1, "min": -4096, "max": 4096}, | |
), | |
"zoom": ( | |
"FLOAT", | |
{"default": 1.0, "min": 0.001, "step": 0.01}, | |
), | |
"angle": ( | |
"FLOAT", | |
{"default": 0, "step": 1, "min": -360, "max": 360}, | |
), | |
"shear": ( | |
"FLOAT", | |
{"default": 0, "step": 1, "min": -4096, "max": 4096}, | |
), | |
"border_handling": ( | |
["edge", "constant", "reflect", "symmetric"], | |
{"default": "edge"}, | |
), | |
"constant_color": ("COLOR", {"default": "#000000"}), | |
}, | |
} | |
FUNCTION = "transform" | |
RETURN_TYPES = ("IMAGE",) | |
CATEGORY = "mtb/transform" | |
def transform( | |
self, | |
image: torch.Tensor, | |
x: float, | |
y: float, | |
zoom: float, | |
angle: float, | |
shear: float, | |
border_handling="edge", | |
constant_color=None, | |
): | |
x = int(x) | |
y = int(y) | |
angle = int(angle) | |
log.debug( | |
f"Zoom: {zoom} | x: {x}, y: {y}, angle: {angle}, shear: {shear}" | |
) | |
if image.size(0) == 0: | |
return (torch.zeros(0),) | |
transformed_images = [] | |
frames_count, frame_height, frame_width, frame_channel_count = ( | |
image.size() | |
) | |
new_height, new_width = ( | |
int(frame_height * zoom), | |
int(frame_width * zoom), | |
) | |
log.debug(f"New height: {new_height}, New width: {new_width}") | |
# - Calculate diagonal of the original image | |
diagonal = sqrt(frame_width**2 + frame_height**2) | |
max_padding = ceil(diagonal * zoom - min(frame_width, frame_height)) | |
# Calculate padding for zoom | |
pw = int(frame_width - new_width) | |
ph = int(frame_height - new_height) | |
pw += abs(max_padding) | |
ph += abs(max_padding) | |
padding = [ | |
max(0, pw + x), | |
max(0, ph + y), | |
max(0, pw - x), | |
max(0, ph - y), | |
] | |
constant_color = hex_to_rgb(constant_color) | |
log.debug(f"Fill Tuple: {constant_color}") | |
for img in tensor2pil(image): | |
img = TF.pad( | |
img, # transformed_frame, | |
padding=padding, | |
padding_mode=border_handling, | |
fill=constant_color or 0, | |
) | |
img = cast( | |
Image.Image, | |
TF.affine( | |
img, angle=angle, scale=zoom, translate=[x, y], shear=shear | |
), | |
) | |
left = abs(padding[0]) | |
upper = abs(padding[1]) | |
right = img.width - abs(padding[2]) | |
bottom = img.height - abs(padding[3]) | |
# log.debug("crop is [:,top:bottom, left:right] for tensors") | |
log.debug("crop is [left, top, right, bottom] for PIL") | |
log.debug(f"crop is {left}, {upper}, {right}, {bottom}") | |
img = img.crop((left, upper, right, bottom)) | |
transformed_images.append(img) | |
return (pil2tensor(transformed_images),) | |
__nodes__ = [MTB_TransformImage] | |