Spaces:
Restarting
on
Zero
Restarting
on
Zero
""" | |
This file is part of ComfyUI. | |
Copyright (C) 2024 Stability AI | |
This program is free software: you can redistribute it and/or modify | |
it under the terms of the GNU General Public License as published by | |
the Free Software Foundation, either version 3 of the License, or | |
(at your option) any later version. | |
This program is distributed in the hope that it will be useful, | |
but WITHOUT ANY WARRANTY; without even the implied warranty of | |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
GNU General Public License for more details. | |
You should have received a copy of the GNU General Public License | |
along with this program. If not, see <https://www.gnu.org/licenses/>. | |
""" | |
import torch | |
import comfy.model_management | |
from comfy.cli_args import args | |
import comfy.float | |
cast_to = comfy.model_management.cast_to #TODO: remove once no more references | |
def cast_to_input(weight, input, non_blocking=False, copy=True): | |
return comfy.model_management.cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy) | |
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None): | |
if input is not None: | |
if dtype is None: | |
dtype = input.dtype | |
if bias_dtype is None: | |
bias_dtype = dtype | |
if device is None: | |
device = input.device | |
bias = None | |
non_blocking = comfy.model_management.device_supports_non_blocking(device) | |
if s.bias is not None: | |
has_function = s.bias_function is not None | |
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function) | |
if has_function: | |
bias = s.bias_function(bias) | |
has_function = s.weight_function is not None | |
weight = comfy.model_management.cast_to(s.weight, dtype, device, non_blocking=non_blocking, copy=has_function) | |
if has_function: | |
weight = s.weight_function(weight) | |
return weight, bias | |
class CastWeightBiasOp: | |
comfy_cast_weights = False | |
weight_function = None | |
bias_function = None | |
class disable_weight_init: | |
class Linear(torch.nn.Linear, CastWeightBiasOp): | |
def reset_parameters(self): | |
return None | |
def forward_comfy_cast_weights(self, input): | |
weight, bias = cast_bias_weight(self, input) | |
return torch.nn.functional.linear(input, weight, bias) | |
def forward(self, *args, **kwargs): | |
if self.comfy_cast_weights: | |
return self.forward_comfy_cast_weights(*args, **kwargs) | |
else: | |
return super().forward(*args, **kwargs) | |
class Conv1d(torch.nn.Conv1d, CastWeightBiasOp): | |
def reset_parameters(self): | |
return None | |
def forward_comfy_cast_weights(self, input): | |
weight, bias = cast_bias_weight(self, input) | |
return self._conv_forward(input, weight, bias) | |
def forward(self, *args, **kwargs): | |
if self.comfy_cast_weights: | |
return self.forward_comfy_cast_weights(*args, **kwargs) | |
else: | |
return super().forward(*args, **kwargs) | |
class Conv2d(torch.nn.Conv2d, CastWeightBiasOp): | |
def reset_parameters(self): | |
return None | |
def forward_comfy_cast_weights(self, input): | |
weight, bias = cast_bias_weight(self, input) | |
return self._conv_forward(input, weight, bias) | |
def forward(self, *args, **kwargs): | |
if self.comfy_cast_weights: | |
return self.forward_comfy_cast_weights(*args, **kwargs) | |
else: | |
return super().forward(*args, **kwargs) | |
class Conv3d(torch.nn.Conv3d, CastWeightBiasOp): | |
def reset_parameters(self): | |
return None | |
def forward_comfy_cast_weights(self, input): | |
weight, bias = cast_bias_weight(self, input) | |
return self._conv_forward(input, weight, bias) | |
def forward(self, *args, **kwargs): | |
if self.comfy_cast_weights: | |
return self.forward_comfy_cast_weights(*args, **kwargs) | |
else: | |
return super().forward(*args, **kwargs) | |
class GroupNorm(torch.nn.GroupNorm, CastWeightBiasOp): | |
def reset_parameters(self): | |
return None | |
def forward_comfy_cast_weights(self, input): | |
weight, bias = cast_bias_weight(self, input) | |
return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps) | |
def forward(self, *args, **kwargs): | |
if self.comfy_cast_weights: | |
return self.forward_comfy_cast_weights(*args, **kwargs) | |
else: | |
return super().forward(*args, **kwargs) | |
class LayerNorm(torch.nn.LayerNorm, CastWeightBiasOp): | |
def reset_parameters(self): | |
return None | |
def forward_comfy_cast_weights(self, input): | |
if self.weight is not None: | |
weight, bias = cast_bias_weight(self, input) | |
else: | |
weight = None | |
bias = None | |
return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps) | |
def forward(self, *args, **kwargs): | |
if self.comfy_cast_weights: | |
return self.forward_comfy_cast_weights(*args, **kwargs) | |
else: | |
return super().forward(*args, **kwargs) | |
class ConvTranspose2d(torch.nn.ConvTranspose2d, CastWeightBiasOp): | |
def reset_parameters(self): | |
return None | |
def forward_comfy_cast_weights(self, input, output_size=None): | |
num_spatial_dims = 2 | |
output_padding = self._output_padding( | |
input, output_size, self.stride, self.padding, self.kernel_size, | |
num_spatial_dims, self.dilation) | |
weight, bias = cast_bias_weight(self, input) | |
return torch.nn.functional.conv_transpose2d( | |
input, weight, bias, self.stride, self.padding, | |
output_padding, self.groups, self.dilation) | |
def forward(self, *args, **kwargs): | |
if self.comfy_cast_weights: | |
return self.forward_comfy_cast_weights(*args, **kwargs) | |
else: | |
return super().forward(*args, **kwargs) | |
class ConvTranspose1d(torch.nn.ConvTranspose1d, CastWeightBiasOp): | |
def reset_parameters(self): | |
return None | |
def forward_comfy_cast_weights(self, input, output_size=None): | |
num_spatial_dims = 1 | |
output_padding = self._output_padding( | |
input, output_size, self.stride, self.padding, self.kernel_size, | |
num_spatial_dims, self.dilation) | |
weight, bias = cast_bias_weight(self, input) | |
return torch.nn.functional.conv_transpose1d( | |
input, weight, bias, self.stride, self.padding, | |
output_padding, self.groups, self.dilation) | |
def forward(self, *args, **kwargs): | |
if self.comfy_cast_weights: | |
return self.forward_comfy_cast_weights(*args, **kwargs) | |
else: | |
return super().forward(*args, **kwargs) | |
class Embedding(torch.nn.Embedding, CastWeightBiasOp): | |
def reset_parameters(self): | |
self.bias = None | |
return None | |
def forward_comfy_cast_weights(self, input, out_dtype=None): | |
output_dtype = out_dtype | |
if self.weight.dtype == torch.float16 or self.weight.dtype == torch.bfloat16: | |
out_dtype = None | |
weight, bias = cast_bias_weight(self, device=input.device, dtype=out_dtype) | |
return torch.nn.functional.embedding(input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse).to(dtype=output_dtype) | |
def forward(self, *args, **kwargs): | |
if self.comfy_cast_weights: | |
return self.forward_comfy_cast_weights(*args, **kwargs) | |
else: | |
if "out_dtype" in kwargs: | |
kwargs.pop("out_dtype") | |
return super().forward(*args, **kwargs) | |
def conv_nd(s, dims, *args, **kwargs): | |
if dims == 2: | |
return s.Conv2d(*args, **kwargs) | |
elif dims == 3: | |
return s.Conv3d(*args, **kwargs) | |
else: | |
raise ValueError(f"unsupported dimensions: {dims}") | |
class manual_cast(disable_weight_init): | |
class Linear(disable_weight_init.Linear): | |
comfy_cast_weights = True | |
class Conv1d(disable_weight_init.Conv1d): | |
comfy_cast_weights = True | |
class Conv2d(disable_weight_init.Conv2d): | |
comfy_cast_weights = True | |
class Conv3d(disable_weight_init.Conv3d): | |
comfy_cast_weights = True | |
class GroupNorm(disable_weight_init.GroupNorm): | |
comfy_cast_weights = True | |
class LayerNorm(disable_weight_init.LayerNorm): | |
comfy_cast_weights = True | |
class ConvTranspose2d(disable_weight_init.ConvTranspose2d): | |
comfy_cast_weights = True | |
class ConvTranspose1d(disable_weight_init.ConvTranspose1d): | |
comfy_cast_weights = True | |
class Embedding(disable_weight_init.Embedding): | |
comfy_cast_weights = True | |
def fp8_linear(self, input): | |
dtype = self.weight.dtype | |
if dtype not in [torch.float8_e4m3fn]: | |
return None | |
tensor_2d = False | |
if len(input.shape) == 2: | |
tensor_2d = True | |
input = input.unsqueeze(1) | |
if len(input.shape) == 3: | |
w, bias = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input.dtype) | |
w = w.t() | |
scale_weight = self.scale_weight | |
scale_input = self.scale_input | |
if scale_weight is None: | |
scale_weight = torch.ones((), device=input.device, dtype=torch.float32) | |
else: | |
scale_weight = scale_weight.to(input.device) | |
if scale_input is None: | |
scale_input = torch.ones((), device=input.device, dtype=torch.float32) | |
inn = input.reshape(-1, input.shape[2]).to(dtype) | |
else: | |
scale_input = scale_input.to(input.device) | |
inn = (input * (1.0 / scale_input).to(input.dtype)).reshape(-1, input.shape[2]).to(dtype) | |
if bias is not None: | |
o = torch._scaled_mm(inn, w, out_dtype=input.dtype, bias=bias, scale_a=scale_input, scale_b=scale_weight) | |
else: | |
o = torch._scaled_mm(inn, w, out_dtype=input.dtype, scale_a=scale_input, scale_b=scale_weight) | |
if isinstance(o, tuple): | |
o = o[0] | |
if tensor_2d: | |
return o.reshape(input.shape[0], -1) | |
return o.reshape((-1, input.shape[1], self.weight.shape[0])) | |
return None | |
class fp8_ops(manual_cast): | |
class Linear(manual_cast.Linear): | |
def reset_parameters(self): | |
self.scale_weight = None | |
self.scale_input = None | |
return None | |
def forward_comfy_cast_weights(self, input): | |
out = fp8_linear(self, input) | |
if out is not None: | |
return out | |
weight, bias = cast_bias_weight(self, input) | |
return torch.nn.functional.linear(input, weight, bias) | |
def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None): | |
class scaled_fp8_op(manual_cast): | |
class Linear(manual_cast.Linear): | |
def __init__(self, *args, **kwargs): | |
if override_dtype is not None: | |
kwargs['dtype'] = override_dtype | |
super().__init__(*args, **kwargs) | |
def reset_parameters(self): | |
if not hasattr(self, 'scale_weight'): | |
self.scale_weight = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False) | |
if not scale_input: | |
self.scale_input = None | |
if not hasattr(self, 'scale_input'): | |
self.scale_input = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False) | |
return None | |
def forward_comfy_cast_weights(self, input): | |
if fp8_matrix_mult: | |
out = fp8_linear(self, input) | |
if out is not None: | |
return out | |
weight, bias = cast_bias_weight(self, input) | |
if weight.numel() < input.numel(): #TODO: optimize | |
return torch.nn.functional.linear(input, weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype), bias) | |
else: | |
return torch.nn.functional.linear(input * self.scale_weight.to(device=weight.device, dtype=weight.dtype), weight, bias) | |
def convert_weight(self, weight, inplace=False, **kwargs): | |
if inplace: | |
weight *= self.scale_weight.to(device=weight.device, dtype=weight.dtype) | |
return weight | |
else: | |
return weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype) | |
def set_weight(self, weight, inplace_update=False, seed=None, **kwargs): | |
weight = comfy.float.stochastic_rounding(weight / self.scale_weight.to(device=weight.device, dtype=weight.dtype), self.weight.dtype, seed=seed) | |
if inplace_update: | |
self.weight.data.copy_(weight) | |
else: | |
self.weight = torch.nn.Parameter(weight, requires_grad=False) | |
return scaled_fp8_op | |
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None): | |
fp8_compute = comfy.model_management.supports_fp8_compute(load_device) | |
if scaled_fp8 is not None: | |
return scaled_fp8_ops(fp8_matrix_mult=fp8_compute, scale_input=True, override_dtype=scaled_fp8) | |
if fp8_compute and (fp8_optimizations or args.fast) and not disable_fast_fp8: | |
return fp8_ops | |
if compute_dtype is None or weight_dtype == compute_dtype: | |
return disable_weight_init | |
return manual_cast | |