Spaces:
Running
on
Zero
Running
on
Zero
import logging | |
import math | |
from typing import Dict, Optional, List | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from ..attention import optimized_attention | |
from einops import rearrange, repeat | |
from .util import timestep_embedding | |
import comfy.ops | |
import comfy.ldm.common_dit | |
def default(x, y): | |
if x is not None: | |
return x | |
return y | |
class Mlp(nn.Module): | |
""" MLP as used in Vision Transformer, MLP-Mixer and related networks | |
""" | |
def __init__( | |
self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
act_layer=nn.GELU, | |
norm_layer=None, | |
bias=True, | |
drop=0., | |
use_conv=False, | |
dtype=None, | |
device=None, | |
operations=None, | |
): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
drop_probs = drop | |
linear_layer = partial(operations.Conv2d, kernel_size=1) if use_conv else operations.Linear | |
self.fc1 = linear_layer(in_features, hidden_features, bias=bias, dtype=dtype, device=device) | |
self.act = act_layer() | |
self.drop1 = nn.Dropout(drop_probs) | |
self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity() | |
self.fc2 = linear_layer(hidden_features, out_features, bias=bias, dtype=dtype, device=device) | |
self.drop2 = nn.Dropout(drop_probs) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop1(x) | |
x = self.norm(x) | |
x = self.fc2(x) | |
x = self.drop2(x) | |
return x | |
class PatchEmbed(nn.Module): | |
""" 2D Image to Patch Embedding | |
""" | |
dynamic_img_pad: torch.jit.Final[bool] | |
def __init__( | |
self, | |
img_size: Optional[int] = 224, | |
patch_size: int = 16, | |
in_chans: int = 3, | |
embed_dim: int = 768, | |
norm_layer = None, | |
flatten: bool = True, | |
bias: bool = True, | |
strict_img_size: bool = True, | |
dynamic_img_pad: bool = True, | |
padding_mode='circular', | |
dtype=None, | |
device=None, | |
operations=None, | |
): | |
super().__init__() | |
self.patch_size = (patch_size, patch_size) | |
self.padding_mode = padding_mode | |
if img_size is not None: | |
self.img_size = (img_size, img_size) | |
self.grid_size = tuple([s // p for s, p in zip(self.img_size, self.patch_size)]) | |
self.num_patches = self.grid_size[0] * self.grid_size[1] | |
else: | |
self.img_size = None | |
self.grid_size = None | |
self.num_patches = None | |
# flatten spatial dim and transpose to channels last, kept for bwd compat | |
self.flatten = flatten | |
self.strict_img_size = strict_img_size | |
self.dynamic_img_pad = dynamic_img_pad | |
self.proj = operations.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias, dtype=dtype, device=device) | |
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() | |
def forward(self, x): | |
# B, C, H, W = x.shape | |
# if self.img_size is not None: | |
# if self.strict_img_size: | |
# _assert(H == self.img_size[0], f"Input height ({H}) doesn't match model ({self.img_size[0]}).") | |
# _assert(W == self.img_size[1], f"Input width ({W}) doesn't match model ({self.img_size[1]}).") | |
# elif not self.dynamic_img_pad: | |
# _assert( | |
# H % self.patch_size[0] == 0, | |
# f"Input height ({H}) should be divisible by patch size ({self.patch_size[0]})." | |
# ) | |
# _assert( | |
# W % self.patch_size[1] == 0, | |
# f"Input width ({W}) should be divisible by patch size ({self.patch_size[1]})." | |
# ) | |
if self.dynamic_img_pad: | |
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size, padding_mode=self.padding_mode) | |
x = self.proj(x) | |
if self.flatten: | |
x = x.flatten(2).transpose(1, 2) # NCHW -> NLC | |
x = self.norm(x) | |
return x | |
def modulate(x, shift, scale): | |
if shift is None: | |
shift = torch.zeros_like(scale) | |
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) | |
################################################################################# | |
# Sine/Cosine Positional Embedding Functions # | |
################################################################################# | |
def get_2d_sincos_pos_embed( | |
embed_dim, | |
grid_size, | |
cls_token=False, | |
extra_tokens=0, | |
scaling_factor=None, | |
offset=None, | |
): | |
""" | |
grid_size: int of the grid height and width | |
return: | |
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) | |
""" | |
grid_h = np.arange(grid_size, dtype=np.float32) | |
grid_w = np.arange(grid_size, dtype=np.float32) | |
grid = np.meshgrid(grid_w, grid_h) # here w goes first | |
grid = np.stack(grid, axis=0) | |
if scaling_factor is not None: | |
grid = grid / scaling_factor | |
if offset is not None: | |
grid = grid - offset | |
grid = grid.reshape([2, 1, grid_size, grid_size]) | |
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) | |
if cls_token and extra_tokens > 0: | |
pos_embed = np.concatenate( | |
[np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0 | |
) | |
return pos_embed | |
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): | |
assert embed_dim % 2 == 0 | |
# use half of dimensions to encode grid_h | |
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) | |
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) | |
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) | |
return emb | |
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): | |
""" | |
embed_dim: output dimension for each position | |
pos: a list of positions to be encoded: size (M,) | |
out: (M, D) | |
""" | |
assert embed_dim % 2 == 0 | |
omega = np.arange(embed_dim // 2, dtype=np.float64) | |
omega /= embed_dim / 2.0 | |
omega = 1.0 / 10000**omega # (D/2,) | |
pos = pos.reshape(-1) # (M,) | |
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product | |
emb_sin = np.sin(out) # (M, D/2) | |
emb_cos = np.cos(out) # (M, D/2) | |
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) | |
return emb | |
def get_1d_sincos_pos_embed_from_grid_torch(embed_dim, pos, device=None, dtype=torch.float32): | |
omega = torch.arange(embed_dim // 2, device=device, dtype=dtype) | |
omega /= embed_dim / 2.0 | |
omega = 1.0 / 10000**omega # (D/2,) | |
pos = pos.reshape(-1) # (M,) | |
out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product | |
emb_sin = torch.sin(out) # (M, D/2) | |
emb_cos = torch.cos(out) # (M, D/2) | |
emb = torch.cat([emb_sin, emb_cos], dim=1) # (M, D) | |
return emb | |
def get_2d_sincos_pos_embed_torch(embed_dim, w, h, val_center=7.5, val_magnitude=7.5, device=None, dtype=torch.float32): | |
small = min(h, w) | |
val_h = (h / small) * val_magnitude | |
val_w = (w / small) * val_magnitude | |
grid_h, grid_w = torch.meshgrid(torch.linspace(-val_h + val_center, val_h + val_center, h, device=device, dtype=dtype), torch.linspace(-val_w + val_center, val_w + val_center, w, device=device, dtype=dtype), indexing='ij') | |
emb_h = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_h, device=device, dtype=dtype) | |
emb_w = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_w, device=device, dtype=dtype) | |
emb = torch.cat([emb_w, emb_h], dim=1) # (H*W, D) | |
return emb | |
################################################################################# | |
# Embedding Layers for Timesteps and Class Labels # | |
################################################################################# | |
class TimestepEmbedder(nn.Module): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
operations.Linear(frequency_embedding_size, hidden_size, bias=True, dtype=dtype, device=device), | |
nn.SiLU(), | |
operations.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
def forward(self, t, dtype, **kwargs): | |
t_freq = timestep_embedding(t, self.frequency_embedding_size).to(dtype) | |
t_emb = self.mlp(t_freq) | |
return t_emb | |
class VectorEmbedder(nn.Module): | |
""" | |
Embeds a flat vector of dimension input_dim | |
""" | |
def __init__(self, input_dim: int, hidden_size: int, dtype=None, device=None, operations=None): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
operations.Linear(input_dim, hidden_size, bias=True, dtype=dtype, device=device), | |
nn.SiLU(), | |
operations.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device), | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
emb = self.mlp(x) | |
return emb | |
################################################################################# | |
# Core DiT Model # | |
################################################################################# | |
def split_qkv(qkv, head_dim): | |
qkv = qkv.reshape(qkv.shape[0], qkv.shape[1], 3, -1, head_dim).movedim(2, 0) | |
return qkv[0], qkv[1], qkv[2] | |
class SelfAttention(nn.Module): | |
ATTENTION_MODES = ("xformers", "torch", "torch-hb", "math", "debug") | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int = 8, | |
qkv_bias: bool = False, | |
qk_scale: Optional[float] = None, | |
proj_drop: float = 0.0, | |
attn_mode: str = "xformers", | |
pre_only: bool = False, | |
qk_norm: Optional[str] = None, | |
rmsnorm: bool = False, | |
dtype=None, | |
device=None, | |
operations=None, | |
): | |
super().__init__() | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device) | |
if not pre_only: | |
self.proj = operations.Linear(dim, dim, dtype=dtype, device=device) | |
self.proj_drop = nn.Dropout(proj_drop) | |
assert attn_mode in self.ATTENTION_MODES | |
self.attn_mode = attn_mode | |
self.pre_only = pre_only | |
if qk_norm == "rms": | |
self.ln_q = RMSNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device) | |
self.ln_k = RMSNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device) | |
elif qk_norm == "ln": | |
self.ln_q = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device) | |
self.ln_k = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device) | |
elif qk_norm is None: | |
self.ln_q = nn.Identity() | |
self.ln_k = nn.Identity() | |
else: | |
raise ValueError(qk_norm) | |
def pre_attention(self, x: torch.Tensor) -> torch.Tensor: | |
B, L, C = x.shape | |
qkv = self.qkv(x) | |
q, k, v = split_qkv(qkv, self.head_dim) | |
q = self.ln_q(q).reshape(q.shape[0], q.shape[1], -1) | |
k = self.ln_k(k).reshape(q.shape[0], q.shape[1], -1) | |
return (q, k, v) | |
def post_attention(self, x: torch.Tensor) -> torch.Tensor: | |
assert not self.pre_only | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
q, k, v = self.pre_attention(x) | |
x = optimized_attention( | |
q, k, v, heads=self.num_heads | |
) | |
x = self.post_attention(x) | |
return x | |
class RMSNorm(torch.nn.Module): | |
def __init__( | |
self, dim: int, elementwise_affine: bool = False, eps: float = 1e-6, device=None, dtype=None | |
): | |
""" | |
Initialize the RMSNorm normalization layer. | |
Args: | |
dim (int): The dimension of the input tensor. | |
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6. | |
Attributes: | |
eps (float): A small value added to the denominator for numerical stability. | |
weight (nn.Parameter): Learnable scaling parameter. | |
""" | |
super().__init__() | |
self.eps = eps | |
self.learnable_scale = elementwise_affine | |
if self.learnable_scale: | |
self.weight = nn.Parameter(torch.empty(dim, device=device, dtype=dtype)) | |
else: | |
self.register_parameter("weight", None) | |
def forward(self, x): | |
return comfy.ldm.common_dit.rms_norm(x, self.weight, self.eps) | |
class SwiGLUFeedForward(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
hidden_dim: int, | |
multiple_of: int, | |
ffn_dim_multiplier: Optional[float] = None, | |
): | |
""" | |
Initialize the FeedForward module. | |
Args: | |
dim (int): Input dimension. | |
hidden_dim (int): Hidden dimension of the feedforward layer. | |
multiple_of (int): Value to ensure hidden dimension is a multiple of this value. | |
ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None. | |
Attributes: | |
w1 (ColumnParallelLinear): Linear transformation for the first layer. | |
w2 (RowParallelLinear): Linear transformation for the second layer. | |
w3 (ColumnParallelLinear): Linear transformation for the third layer. | |
""" | |
super().__init__() | |
hidden_dim = int(2 * hidden_dim / 3) | |
# custom dim factor multiplier | |
if ffn_dim_multiplier is not None: | |
hidden_dim = int(ffn_dim_multiplier * hidden_dim) | |
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) | |
self.w1 = nn.Linear(dim, hidden_dim, bias=False) | |
self.w2 = nn.Linear(hidden_dim, dim, bias=False) | |
self.w3 = nn.Linear(dim, hidden_dim, bias=False) | |
def forward(self, x): | |
return self.w2(nn.functional.silu(self.w1(x)) * self.w3(x)) | |
class DismantledBlock(nn.Module): | |
""" | |
A DiT block with gated adaptive layer norm (adaLN) conditioning. | |
""" | |
ATTENTION_MODES = ("xformers", "torch", "torch-hb", "math", "debug") | |
def __init__( | |
self, | |
hidden_size: int, | |
num_heads: int, | |
mlp_ratio: float = 4.0, | |
attn_mode: str = "xformers", | |
qkv_bias: bool = False, | |
pre_only: bool = False, | |
rmsnorm: bool = False, | |
scale_mod_only: bool = False, | |
swiglu: bool = False, | |
qk_norm: Optional[str] = None, | |
x_block_self_attn: bool = False, | |
dtype=None, | |
device=None, | |
operations=None, | |
**block_kwargs, | |
): | |
super().__init__() | |
assert attn_mode in self.ATTENTION_MODES | |
if not rmsnorm: | |
self.norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) | |
else: | |
self.norm1 = RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.attn = SelfAttention( | |
dim=hidden_size, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
attn_mode=attn_mode, | |
pre_only=pre_only, | |
qk_norm=qk_norm, | |
rmsnorm=rmsnorm, | |
dtype=dtype, | |
device=device, | |
operations=operations | |
) | |
if x_block_self_attn: | |
assert not pre_only | |
assert not scale_mod_only | |
self.x_block_self_attn = True | |
self.attn2 = SelfAttention( | |
dim=hidden_size, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
attn_mode=attn_mode, | |
pre_only=False, | |
qk_norm=qk_norm, | |
rmsnorm=rmsnorm, | |
dtype=dtype, | |
device=device, | |
operations=operations | |
) | |
else: | |
self.x_block_self_attn = False | |
if not pre_only: | |
if not rmsnorm: | |
self.norm2 = operations.LayerNorm( | |
hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device | |
) | |
else: | |
self.norm2 = RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
if not pre_only: | |
if not swiglu: | |
self.mlp = Mlp( | |
in_features=hidden_size, | |
hidden_features=mlp_hidden_dim, | |
act_layer=lambda: nn.GELU(approximate="tanh"), | |
drop=0, | |
dtype=dtype, | |
device=device, | |
operations=operations | |
) | |
else: | |
self.mlp = SwiGLUFeedForward( | |
dim=hidden_size, | |
hidden_dim=mlp_hidden_dim, | |
multiple_of=256, | |
) | |
self.scale_mod_only = scale_mod_only | |
if x_block_self_attn: | |
assert not pre_only | |
assert not scale_mod_only | |
n_mods = 9 | |
elif not scale_mod_only: | |
n_mods = 6 if not pre_only else 2 | |
else: | |
n_mods = 4 if not pre_only else 1 | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), operations.Linear(hidden_size, n_mods * hidden_size, bias=True, dtype=dtype, device=device) | |
) | |
self.pre_only = pre_only | |
def pre_attention(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor: | |
if not self.pre_only: | |
if not self.scale_mod_only: | |
( | |
shift_msa, | |
scale_msa, | |
gate_msa, | |
shift_mlp, | |
scale_mlp, | |
gate_mlp, | |
) = self.adaLN_modulation(c).chunk(6, dim=1) | |
else: | |
shift_msa = None | |
shift_mlp = None | |
( | |
scale_msa, | |
gate_msa, | |
scale_mlp, | |
gate_mlp, | |
) = self.adaLN_modulation( | |
c | |
).chunk(4, dim=1) | |
qkv = self.attn.pre_attention(modulate(self.norm1(x), shift_msa, scale_msa)) | |
return qkv, ( | |
x, | |
gate_msa, | |
shift_mlp, | |
scale_mlp, | |
gate_mlp, | |
) | |
else: | |
if not self.scale_mod_only: | |
( | |
shift_msa, | |
scale_msa, | |
) = self.adaLN_modulation( | |
c | |
).chunk(2, dim=1) | |
else: | |
shift_msa = None | |
scale_msa = self.adaLN_modulation(c) | |
qkv = self.attn.pre_attention(modulate(self.norm1(x), shift_msa, scale_msa)) | |
return qkv, None | |
def post_attention(self, attn, x, gate_msa, shift_mlp, scale_mlp, gate_mlp): | |
assert not self.pre_only | |
x = x + gate_msa.unsqueeze(1) * self.attn.post_attention(attn) | |
x = x + gate_mlp.unsqueeze(1) * self.mlp( | |
modulate(self.norm2(x), shift_mlp, scale_mlp) | |
) | |
return x | |
def pre_attention_x(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor: | |
assert self.x_block_self_attn | |
( | |
shift_msa, | |
scale_msa, | |
gate_msa, | |
shift_mlp, | |
scale_mlp, | |
gate_mlp, | |
shift_msa2, | |
scale_msa2, | |
gate_msa2, | |
) = self.adaLN_modulation(c).chunk(9, dim=1) | |
x_norm = self.norm1(x) | |
qkv = self.attn.pre_attention(modulate(x_norm, shift_msa, scale_msa)) | |
qkv2 = self.attn2.pre_attention(modulate(x_norm, shift_msa2, scale_msa2)) | |
return qkv, qkv2, ( | |
x, | |
gate_msa, | |
shift_mlp, | |
scale_mlp, | |
gate_mlp, | |
gate_msa2, | |
) | |
def post_attention_x(self, attn, attn2, x, gate_msa, shift_mlp, scale_mlp, gate_mlp, gate_msa2): | |
assert not self.pre_only | |
attn1 = self.attn.post_attention(attn) | |
attn2 = self.attn2.post_attention(attn2) | |
out1 = gate_msa.unsqueeze(1) * attn1 | |
out2 = gate_msa2.unsqueeze(1) * attn2 | |
x = x + out1 | |
x = x + out2 | |
x = x + gate_mlp.unsqueeze(1) * self.mlp( | |
modulate(self.norm2(x), shift_mlp, scale_mlp) | |
) | |
return x | |
def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor: | |
assert not self.pre_only | |
if self.x_block_self_attn: | |
qkv, qkv2, intermediates = self.pre_attention_x(x, c) | |
attn, _ = optimized_attention( | |
qkv[0], qkv[1], qkv[2], | |
num_heads=self.attn.num_heads, | |
) | |
attn2, _ = optimized_attention( | |
qkv2[0], qkv2[1], qkv2[2], | |
num_heads=self.attn2.num_heads, | |
) | |
return self.post_attention_x(attn, attn2, *intermediates) | |
else: | |
qkv, intermediates = self.pre_attention(x, c) | |
attn = optimized_attention( | |
qkv[0], qkv[1], qkv[2], | |
heads=self.attn.num_heads, | |
) | |
return self.post_attention(attn, *intermediates) | |
def block_mixing(*args, use_checkpoint=True, **kwargs): | |
if use_checkpoint: | |
return torch.utils.checkpoint.checkpoint( | |
_block_mixing, *args, use_reentrant=False, **kwargs | |
) | |
else: | |
return _block_mixing(*args, **kwargs) | |
def _block_mixing(context, x, context_block, x_block, c): | |
context_qkv, context_intermediates = context_block.pre_attention(context, c) | |
if x_block.x_block_self_attn: | |
x_qkv, x_qkv2, x_intermediates = x_block.pre_attention_x(x, c) | |
else: | |
x_qkv, x_intermediates = x_block.pre_attention(x, c) | |
o = [] | |
for t in range(3): | |
o.append(torch.cat((context_qkv[t], x_qkv[t]), dim=1)) | |
qkv = tuple(o) | |
attn = optimized_attention( | |
qkv[0], qkv[1], qkv[2], | |
heads=x_block.attn.num_heads, | |
) | |
context_attn, x_attn = ( | |
attn[:, : context_qkv[0].shape[1]], | |
attn[:, context_qkv[0].shape[1] :], | |
) | |
if not context_block.pre_only: | |
context = context_block.post_attention(context_attn, *context_intermediates) | |
else: | |
context = None | |
if x_block.x_block_self_attn: | |
attn2 = optimized_attention( | |
x_qkv2[0], x_qkv2[1], x_qkv2[2], | |
heads=x_block.attn2.num_heads, | |
) | |
x = x_block.post_attention_x(x_attn, attn2, *x_intermediates) | |
else: | |
x = x_block.post_attention(x_attn, *x_intermediates) | |
return context, x | |
class JointBlock(nn.Module): | |
"""just a small wrapper to serve as a fsdp unit""" | |
def __init__( | |
self, | |
*args, | |
**kwargs, | |
): | |
super().__init__() | |
pre_only = kwargs.pop("pre_only") | |
qk_norm = kwargs.pop("qk_norm", None) | |
x_block_self_attn = kwargs.pop("x_block_self_attn", False) | |
self.context_block = DismantledBlock(*args, pre_only=pre_only, qk_norm=qk_norm, **kwargs) | |
self.x_block = DismantledBlock(*args, | |
pre_only=False, | |
qk_norm=qk_norm, | |
x_block_self_attn=x_block_self_attn, | |
**kwargs) | |
def forward(self, *args, **kwargs): | |
return block_mixing( | |
*args, context_block=self.context_block, x_block=self.x_block, **kwargs | |
) | |
class FinalLayer(nn.Module): | |
""" | |
The final layer of DiT. | |
""" | |
def __init__( | |
self, | |
hidden_size: int, | |
patch_size: int, | |
out_channels: int, | |
total_out_channels: Optional[int] = None, | |
dtype=None, | |
device=None, | |
operations=None, | |
): | |
super().__init__() | |
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) | |
self.linear = ( | |
operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device) | |
if (total_out_channels is None) | |
else operations.Linear(hidden_size, total_out_channels, bias=True, dtype=dtype, device=device) | |
) | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device) | |
) | |
def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor: | |
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) | |
x = modulate(self.norm_final(x), shift, scale) | |
x = self.linear(x) | |
return x | |
class SelfAttentionContext(nn.Module): | |
def __init__(self, dim, heads=8, dim_head=64, dtype=None, device=None, operations=None): | |
super().__init__() | |
dim_head = dim // heads | |
inner_dim = dim | |
self.heads = heads | |
self.dim_head = dim_head | |
self.qkv = operations.Linear(dim, dim * 3, bias=True, dtype=dtype, device=device) | |
self.proj = operations.Linear(inner_dim, dim, dtype=dtype, device=device) | |
def forward(self, x): | |
qkv = self.qkv(x) | |
q, k, v = split_qkv(qkv, self.dim_head) | |
x = optimized_attention(q.reshape(q.shape[0], q.shape[1], -1), k, v, heads=self.heads) | |
return self.proj(x) | |
class ContextProcessorBlock(nn.Module): | |
def __init__(self, context_size, dtype=None, device=None, operations=None): | |
super().__init__() | |
self.norm1 = operations.LayerNorm(context_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) | |
self.attn = SelfAttentionContext(context_size, dtype=dtype, device=device, operations=operations) | |
self.norm2 = operations.LayerNorm(context_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) | |
self.mlp = Mlp(in_features=context_size, hidden_features=(context_size * 4), act_layer=lambda: nn.GELU(approximate="tanh"), drop=0, dtype=dtype, device=device, operations=operations) | |
def forward(self, x): | |
x += self.attn(self.norm1(x)) | |
x += self.mlp(self.norm2(x)) | |
return x | |
class ContextProcessor(nn.Module): | |
def __init__(self, context_size, num_layers, dtype=None, device=None, operations=None): | |
super().__init__() | |
self.layers = torch.nn.ModuleList([ContextProcessorBlock(context_size, dtype=dtype, device=device, operations=operations) for i in range(num_layers)]) | |
self.norm = operations.LayerNorm(context_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) | |
def forward(self, x): | |
for i, l in enumerate(self.layers): | |
x = l(x) | |
return self.norm(x) | |
class MMDiT(nn.Module): | |
""" | |
Diffusion model with a Transformer backbone. | |
""" | |
def __init__( | |
self, | |
input_size: int = 32, | |
patch_size: int = 2, | |
in_channels: int = 4, | |
depth: int = 28, | |
# hidden_size: Optional[int] = None, | |
# num_heads: Optional[int] = None, | |
mlp_ratio: float = 4.0, | |
learn_sigma: bool = False, | |
adm_in_channels: Optional[int] = None, | |
context_embedder_config: Optional[Dict] = None, | |
compile_core: bool = False, | |
use_checkpoint: bool = False, | |
register_length: int = 0, | |
attn_mode: str = "torch", | |
rmsnorm: bool = False, | |
scale_mod_only: bool = False, | |
swiglu: bool = False, | |
out_channels: Optional[int] = None, | |
pos_embed_scaling_factor: Optional[float] = None, | |
pos_embed_offset: Optional[float] = None, | |
pos_embed_max_size: Optional[int] = None, | |
num_patches = None, | |
qk_norm: Optional[str] = None, | |
qkv_bias: bool = True, | |
context_processor_layers = None, | |
x_block_self_attn: bool = False, | |
x_block_self_attn_layers: Optional[List[int]] = [], | |
context_size = 4096, | |
num_blocks = None, | |
final_layer = True, | |
skip_blocks = False, | |
dtype = None, #TODO | |
device = None, | |
operations = None, | |
): | |
super().__init__() | |
self.dtype = dtype | |
self.learn_sigma = learn_sigma | |
self.in_channels = in_channels | |
default_out_channels = in_channels * 2 if learn_sigma else in_channels | |
self.out_channels = default(out_channels, default_out_channels) | |
self.patch_size = patch_size | |
self.pos_embed_scaling_factor = pos_embed_scaling_factor | |
self.pos_embed_offset = pos_embed_offset | |
self.pos_embed_max_size = pos_embed_max_size | |
self.x_block_self_attn_layers = x_block_self_attn_layers | |
# hidden_size = default(hidden_size, 64 * depth) | |
# num_heads = default(num_heads, hidden_size // 64) | |
# apply magic --> this defines a head_size of 64 | |
self.hidden_size = 64 * depth | |
num_heads = depth | |
if num_blocks is None: | |
num_blocks = depth | |
self.depth = depth | |
self.num_heads = num_heads | |
self.x_embedder = PatchEmbed( | |
input_size, | |
patch_size, | |
in_channels, | |
self.hidden_size, | |
bias=True, | |
strict_img_size=self.pos_embed_max_size is None, | |
dtype=dtype, | |
device=device, | |
operations=operations | |
) | |
self.t_embedder = TimestepEmbedder(self.hidden_size, dtype=dtype, device=device, operations=operations) | |
self.y_embedder = None | |
if adm_in_channels is not None: | |
assert isinstance(adm_in_channels, int) | |
self.y_embedder = VectorEmbedder(adm_in_channels, self.hidden_size, dtype=dtype, device=device, operations=operations) | |
if context_processor_layers is not None: | |
self.context_processor = ContextProcessor(context_size, context_processor_layers, dtype=dtype, device=device, operations=operations) | |
else: | |
self.context_processor = None | |
self.context_embedder = nn.Identity() | |
if context_embedder_config is not None: | |
if context_embedder_config["target"] == "torch.nn.Linear": | |
self.context_embedder = operations.Linear(**context_embedder_config["params"], dtype=dtype, device=device) | |
self.register_length = register_length | |
if self.register_length > 0: | |
self.register = nn.Parameter(torch.randn(1, register_length, self.hidden_size, dtype=dtype, device=device)) | |
# num_patches = self.x_embedder.num_patches | |
# Will use fixed sin-cos embedding: | |
# just use a buffer already | |
if num_patches is not None: | |
self.register_buffer( | |
"pos_embed", | |
torch.empty(1, num_patches, self.hidden_size, dtype=dtype, device=device), | |
) | |
else: | |
self.pos_embed = None | |
self.use_checkpoint = use_checkpoint | |
if not skip_blocks: | |
self.joint_blocks = nn.ModuleList( | |
[ | |
JointBlock( | |
self.hidden_size, | |
num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
attn_mode=attn_mode, | |
pre_only=(i == num_blocks - 1) and final_layer, | |
rmsnorm=rmsnorm, | |
scale_mod_only=scale_mod_only, | |
swiglu=swiglu, | |
qk_norm=qk_norm, | |
x_block_self_attn=(i in self.x_block_self_attn_layers) or x_block_self_attn, | |
dtype=dtype, | |
device=device, | |
operations=operations, | |
) | |
for i in range(num_blocks) | |
] | |
) | |
if final_layer: | |
self.final_layer = FinalLayer(self.hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations) | |
if compile_core: | |
assert False | |
self.forward_core_with_concat = torch.compile(self.forward_core_with_concat) | |
def cropped_pos_embed(self, hw, device=None): | |
p = self.x_embedder.patch_size[0] | |
h, w = hw | |
# patched size | |
h = (h + 1) // p | |
w = (w + 1) // p | |
if self.pos_embed is None: | |
return get_2d_sincos_pos_embed_torch(self.hidden_size, w, h, device=device) | |
assert self.pos_embed_max_size is not None | |
assert h <= self.pos_embed_max_size, (h, self.pos_embed_max_size) | |
assert w <= self.pos_embed_max_size, (w, self.pos_embed_max_size) | |
top = (self.pos_embed_max_size - h) // 2 | |
left = (self.pos_embed_max_size - w) // 2 | |
spatial_pos_embed = rearrange( | |
self.pos_embed, | |
"1 (h w) c -> 1 h w c", | |
h=self.pos_embed_max_size, | |
w=self.pos_embed_max_size, | |
) | |
spatial_pos_embed = spatial_pos_embed[:, top : top + h, left : left + w, :] | |
spatial_pos_embed = rearrange(spatial_pos_embed, "1 h w c -> 1 (h w) c") | |
# print(spatial_pos_embed, top, left, h, w) | |
# # t = get_2d_sincos_pos_embed_torch(self.hidden_size, w, h, 7.875, 7.875, device=device) #matches exactly for 1024 res | |
# t = get_2d_sincos_pos_embed_torch(self.hidden_size, w, h, 7.5, 7.5, device=device) #scales better | |
# # print(t) | |
# return t | |
return spatial_pos_embed | |
def unpatchify(self, x, hw=None): | |
""" | |
x: (N, T, patch_size**2 * C) | |
imgs: (N, H, W, C) | |
""" | |
c = self.out_channels | |
p = self.x_embedder.patch_size[0] | |
if hw is None: | |
h = w = int(x.shape[1] ** 0.5) | |
else: | |
h, w = hw | |
h = (h + 1) // p | |
w = (w + 1) // p | |
assert h * w == x.shape[1] | |
x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) | |
x = torch.einsum("nhwpqc->nchpwq", x) | |
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p)) | |
return imgs | |
def forward_core_with_concat( | |
self, | |
x: torch.Tensor, | |
c_mod: torch.Tensor, | |
context: Optional[torch.Tensor] = None, | |
control = None, | |
transformer_options = {}, | |
) -> torch.Tensor: | |
patches_replace = transformer_options.get("patches_replace", {}) | |
if self.register_length > 0: | |
context = torch.cat( | |
( | |
repeat(self.register, "1 ... -> b ...", b=x.shape[0]), | |
default(context, torch.Tensor([]).type_as(x)), | |
), | |
1, | |
) | |
# context is B, L', D | |
# x is B, L, D | |
blocks_replace = patches_replace.get("dit", {}) | |
blocks = len(self.joint_blocks) | |
for i in range(blocks): | |
if ("double_block", i) in blocks_replace: | |
def block_wrap(args): | |
out = {} | |
out["txt"], out["img"] = self.joint_blocks[i](args["txt"], args["img"], c=args["vec"]) | |
return out | |
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": c_mod}, {"original_block": block_wrap}) | |
context = out["txt"] | |
x = out["img"] | |
else: | |
context, x = self.joint_blocks[i]( | |
context, | |
x, | |
c=c_mod, | |
use_checkpoint=self.use_checkpoint, | |
) | |
if control is not None: | |
control_o = control.get("output") | |
if i < len(control_o): | |
add = control_o[i] | |
if add is not None: | |
x += add | |
x = self.final_layer(x, c_mod) # (N, T, patch_size ** 2 * out_channels) | |
return x | |
def forward( | |
self, | |
x: torch.Tensor, | |
t: torch.Tensor, | |
y: Optional[torch.Tensor] = None, | |
context: Optional[torch.Tensor] = None, | |
control = None, | |
transformer_options = {}, | |
) -> torch.Tensor: | |
""" | |
Forward pass of DiT. | |
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
t: (N,) tensor of diffusion timesteps | |
y: (N,) tensor of class labels | |
""" | |
if self.context_processor is not None: | |
context = self.context_processor(context) | |
hw = x.shape[-2:] | |
x = self.x_embedder(x) + comfy.ops.cast_to_input(self.cropped_pos_embed(hw, device=x.device), x) | |
c = self.t_embedder(t, dtype=x.dtype) # (N, D) | |
if y is not None and self.y_embedder is not None: | |
y = self.y_embedder(y) # (N, D) | |
c = c + y # (N, D) | |
if context is not None: | |
context = self.context_embedder(context) | |
x = self.forward_core_with_concat(x, c, context, control, transformer_options) | |
x = self.unpatchify(x, hw=hw) # (N, out_channels, H, W) | |
return x[:,:,:hw[-2],:hw[-1]] | |
class OpenAISignatureMMDITWrapper(MMDiT): | |
def forward( | |
self, | |
x: torch.Tensor, | |
timesteps: torch.Tensor, | |
context: Optional[torch.Tensor] = None, | |
y: Optional[torch.Tensor] = None, | |
control = None, | |
transformer_options = {}, | |
**kwargs, | |
) -> torch.Tensor: | |
return super().forward(x, timesteps, context=context, y=y, control=control, transformer_options=transformer_options) | |