Spaces:
Running
on
Zero
Running
on
Zero
# pytorch_diffusion + derived encoder decoder | |
import math | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
from typing import Optional, Any | |
import logging | |
from comfy import model_management | |
import comfy.ops | |
ops = comfy.ops.disable_weight_init | |
if model_management.xformers_enabled_vae(): | |
import xformers | |
import xformers.ops | |
def get_timestep_embedding(timesteps, embedding_dim): | |
""" | |
This matches the implementation in Denoising Diffusion Probabilistic Models: | |
From Fairseq. | |
Build sinusoidal embeddings. | |
This matches the implementation in tensor2tensor, but differs slightly | |
from the description in Section 3.5 of "Attention Is All You Need". | |
""" | |
assert len(timesteps.shape) == 1 | |
half_dim = embedding_dim // 2 | |
emb = math.log(10000) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) | |
emb = emb.to(device=timesteps.device) | |
emb = timesteps.float()[:, None] * emb[None, :] | |
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
if embedding_dim % 2 == 1: # zero pad | |
emb = torch.nn.functional.pad(emb, (0,1,0,0)) | |
return emb | |
def nonlinearity(x): | |
# swish | |
return x*torch.sigmoid(x) | |
def Normalize(in_channels, num_groups=32): | |
return ops.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
class Upsample(nn.Module): | |
def __init__(self, in_channels, with_conv): | |
super().__init__() | |
self.with_conv = with_conv | |
if self.with_conv: | |
self.conv = ops.Conv2d(in_channels, | |
in_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
def forward(self, x): | |
try: | |
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") | |
except: #operation not implemented for bf16 | |
b, c, h, w = x.shape | |
out = torch.empty((b, c, h*2, w*2), dtype=x.dtype, layout=x.layout, device=x.device) | |
split = 8 | |
l = out.shape[1] // split | |
for i in range(0, out.shape[1], l): | |
out[:,i:i+l] = torch.nn.functional.interpolate(x[:,i:i+l].to(torch.float32), scale_factor=2.0, mode="nearest").to(x.dtype) | |
del x | |
x = out | |
if self.with_conv: | |
x = self.conv(x) | |
return x | |
class Downsample(nn.Module): | |
def __init__(self, in_channels, with_conv): | |
super().__init__() | |
self.with_conv = with_conv | |
if self.with_conv: | |
# no asymmetric padding in torch conv, must do it ourselves | |
self.conv = ops.Conv2d(in_channels, | |
in_channels, | |
kernel_size=3, | |
stride=2, | |
padding=0) | |
def forward(self, x): | |
if self.with_conv: | |
pad = (0,1,0,1) | |
x = torch.nn.functional.pad(x, pad, mode="constant", value=0) | |
x = self.conv(x) | |
else: | |
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) | |
return x | |
class ResnetBlock(nn.Module): | |
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, | |
dropout, temb_channels=512): | |
super().__init__() | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
self.swish = torch.nn.SiLU(inplace=True) | |
self.norm1 = Normalize(in_channels) | |
self.conv1 = ops.Conv2d(in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
if temb_channels > 0: | |
self.temb_proj = ops.Linear(temb_channels, | |
out_channels) | |
self.norm2 = Normalize(out_channels) | |
self.dropout = torch.nn.Dropout(dropout, inplace=True) | |
self.conv2 = ops.Conv2d(out_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
self.conv_shortcut = ops.Conv2d(in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
else: | |
self.nin_shortcut = ops.Conv2d(in_channels, | |
out_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
def forward(self, x, temb): | |
h = x | |
h = self.norm1(h) | |
h = self.swish(h) | |
h = self.conv1(h) | |
if temb is not None: | |
h = h + self.temb_proj(self.swish(temb))[:,:,None,None] | |
h = self.norm2(h) | |
h = self.swish(h) | |
h = self.dropout(h) | |
h = self.conv2(h) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
x = self.conv_shortcut(x) | |
else: | |
x = self.nin_shortcut(x) | |
return x+h | |
def slice_attention(q, k, v): | |
r1 = torch.zeros_like(k, device=q.device) | |
scale = (int(q.shape[-1])**(-0.5)) | |
mem_free_total = model_management.get_free_memory(q.device) | |
gb = 1024 ** 3 | |
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size() | |
modifier = 3 if q.element_size() == 2 else 2.5 | |
mem_required = tensor_size * modifier | |
steps = 1 | |
if mem_required > mem_free_total: | |
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) | |
while True: | |
try: | |
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] | |
for i in range(0, q.shape[1], slice_size): | |
end = i + slice_size | |
s1 = torch.bmm(q[:, i:end], k) * scale | |
s2 = torch.nn.functional.softmax(s1, dim=2).permute(0,2,1) | |
del s1 | |
r1[:, :, i:end] = torch.bmm(v, s2) | |
del s2 | |
break | |
except model_management.OOM_EXCEPTION as e: | |
model_management.soft_empty_cache(True) | |
steps *= 2 | |
if steps > 128: | |
raise e | |
logging.warning("out of memory error, increasing steps and trying again {}".format(steps)) | |
return r1 | |
def normal_attention(q, k, v): | |
# compute attention | |
b,c,h,w = q.shape | |
q = q.reshape(b,c,h*w) | |
q = q.permute(0,2,1) # b,hw,c | |
k = k.reshape(b,c,h*w) # b,c,hw | |
v = v.reshape(b,c,h*w) | |
r1 = slice_attention(q, k, v) | |
h_ = r1.reshape(b,c,h,w) | |
del r1 | |
return h_ | |
def xformers_attention(q, k, v): | |
# compute attention | |
B, C, H, W = q.shape | |
q, k, v = map( | |
lambda t: t.view(B, C, -1).transpose(1, 2).contiguous(), | |
(q, k, v), | |
) | |
try: | |
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) | |
out = out.transpose(1, 2).reshape(B, C, H, W) | |
except NotImplementedError as e: | |
out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W) | |
return out | |
def pytorch_attention(q, k, v): | |
# compute attention | |
B, C, H, W = q.shape | |
q, k, v = map( | |
lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(), | |
(q, k, v), | |
) | |
try: | |
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False) | |
out = out.transpose(2, 3).reshape(B, C, H, W) | |
except model_management.OOM_EXCEPTION as e: | |
logging.warning("scaled_dot_product_attention OOMed: switched to slice attention") | |
out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W) | |
return out | |
class AttnBlock(nn.Module): | |
def __init__(self, in_channels): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = Normalize(in_channels) | |
self.q = ops.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.k = ops.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.v = ops.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.proj_out = ops.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
if model_management.xformers_enabled_vae(): | |
logging.info("Using xformers attention in VAE") | |
self.optimized_attention = xformers_attention | |
elif model_management.pytorch_attention_enabled(): | |
logging.info("Using pytorch attention in VAE") | |
self.optimized_attention = pytorch_attention | |
else: | |
logging.info("Using split attention in VAE") | |
self.optimized_attention = normal_attention | |
def forward(self, x): | |
h_ = x | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
h_ = self.optimized_attention(q, k, v) | |
h_ = self.proj_out(h_) | |
return x+h_ | |
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None): | |
return AttnBlock(in_channels) | |
class Model(nn.Module): | |
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, | |
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, | |
resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"): | |
super().__init__() | |
if use_linear_attn: attn_type = "linear" | |
self.ch = ch | |
self.temb_ch = self.ch*4 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
self.use_timestep = use_timestep | |
if self.use_timestep: | |
# timestep embedding | |
self.temb = nn.Module() | |
self.temb.dense = nn.ModuleList([ | |
ops.Linear(self.ch, | |
self.temb_ch), | |
ops.Linear(self.temb_ch, | |
self.temb_ch), | |
]) | |
# downsampling | |
self.conv_in = ops.Conv2d(in_channels, | |
self.ch, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
curr_res = resolution | |
in_ch_mult = (1,)+tuple(ch_mult) | |
self.down = nn.ModuleList() | |
for i_level in range(self.num_resolutions): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_in = ch*in_ch_mult[i_level] | |
block_out = ch*ch_mult[i_level] | |
for i_block in range(self.num_res_blocks): | |
block.append(ResnetBlock(in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout)) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(make_attn(block_in, attn_type=attn_type)) | |
down = nn.Module() | |
down.block = block | |
down.attn = attn | |
if i_level != self.num_resolutions-1: | |
down.downsample = Downsample(block_in, resamp_with_conv) | |
curr_res = curr_res // 2 | |
self.down.append(down) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock(in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout) | |
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) | |
self.mid.block_2 = ResnetBlock(in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout) | |
# upsampling | |
self.up = nn.ModuleList() | |
for i_level in reversed(range(self.num_resolutions)): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_out = ch*ch_mult[i_level] | |
skip_in = ch*ch_mult[i_level] | |
for i_block in range(self.num_res_blocks+1): | |
if i_block == self.num_res_blocks: | |
skip_in = ch*in_ch_mult[i_level] | |
block.append(ResnetBlock(in_channels=block_in+skip_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout)) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(make_attn(block_in, attn_type=attn_type)) | |
up = nn.Module() | |
up.block = block | |
up.attn = attn | |
if i_level != 0: | |
up.upsample = Upsample(block_in, resamp_with_conv) | |
curr_res = curr_res * 2 | |
self.up.insert(0, up) # prepend to get consistent order | |
# end | |
self.norm_out = Normalize(block_in) | |
self.conv_out = ops.Conv2d(block_in, | |
out_ch, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
def forward(self, x, t=None, context=None): | |
#assert x.shape[2] == x.shape[3] == self.resolution | |
if context is not None: | |
# assume aligned context, cat along channel axis | |
x = torch.cat((x, context), dim=1) | |
if self.use_timestep: | |
# timestep embedding | |
assert t is not None | |
temb = get_timestep_embedding(t, self.ch) | |
temb = self.temb.dense[0](temb) | |
temb = nonlinearity(temb) | |
temb = self.temb.dense[1](temb) | |
else: | |
temb = None | |
# downsampling | |
hs = [self.conv_in(x)] | |
for i_level in range(self.num_resolutions): | |
for i_block in range(self.num_res_blocks): | |
h = self.down[i_level].block[i_block](hs[-1], temb) | |
if len(self.down[i_level].attn) > 0: | |
h = self.down[i_level].attn[i_block](h) | |
hs.append(h) | |
if i_level != self.num_resolutions-1: | |
hs.append(self.down[i_level].downsample(hs[-1])) | |
# middle | |
h = hs[-1] | |
h = self.mid.block_1(h, temb) | |
h = self.mid.attn_1(h) | |
h = self.mid.block_2(h, temb) | |
# upsampling | |
for i_level in reversed(range(self.num_resolutions)): | |
for i_block in range(self.num_res_blocks+1): | |
h = self.up[i_level].block[i_block]( | |
torch.cat([h, hs.pop()], dim=1), temb) | |
if len(self.up[i_level].attn) > 0: | |
h = self.up[i_level].attn[i_block](h) | |
if i_level != 0: | |
h = self.up[i_level].upsample(h) | |
# end | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
return h | |
def get_last_layer(self): | |
return self.conv_out.weight | |
class Encoder(nn.Module): | |
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, | |
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, | |
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla", | |
**ignore_kwargs): | |
super().__init__() | |
if use_linear_attn: attn_type = "linear" | |
self.ch = ch | |
self.temb_ch = 0 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
# downsampling | |
self.conv_in = ops.Conv2d(in_channels, | |
self.ch, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
curr_res = resolution | |
in_ch_mult = (1,)+tuple(ch_mult) | |
self.in_ch_mult = in_ch_mult | |
self.down = nn.ModuleList() | |
for i_level in range(self.num_resolutions): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_in = ch*in_ch_mult[i_level] | |
block_out = ch*ch_mult[i_level] | |
for i_block in range(self.num_res_blocks): | |
block.append(ResnetBlock(in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout)) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(make_attn(block_in, attn_type=attn_type)) | |
down = nn.Module() | |
down.block = block | |
down.attn = attn | |
if i_level != self.num_resolutions-1: | |
down.downsample = Downsample(block_in, resamp_with_conv) | |
curr_res = curr_res // 2 | |
self.down.append(down) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock(in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout) | |
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) | |
self.mid.block_2 = ResnetBlock(in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout) | |
# end | |
self.norm_out = Normalize(block_in) | |
self.conv_out = ops.Conv2d(block_in, | |
2*z_channels if double_z else z_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
def forward(self, x): | |
# timestep embedding | |
temb = None | |
# downsampling | |
h = self.conv_in(x) | |
for i_level in range(self.num_resolutions): | |
for i_block in range(self.num_res_blocks): | |
h = self.down[i_level].block[i_block](h, temb) | |
if len(self.down[i_level].attn) > 0: | |
h = self.down[i_level].attn[i_block](h) | |
if i_level != self.num_resolutions-1: | |
h = self.down[i_level].downsample(h) | |
# middle | |
h = self.mid.block_1(h, temb) | |
h = self.mid.attn_1(h) | |
h = self.mid.block_2(h, temb) | |
# end | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
return h | |
class Decoder(nn.Module): | |
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, | |
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, | |
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, | |
conv_out_op=ops.Conv2d, | |
resnet_op=ResnetBlock, | |
attn_op=AttnBlock, | |
**ignorekwargs): | |
super().__init__() | |
if use_linear_attn: attn_type = "linear" | |
self.ch = ch | |
self.temb_ch = 0 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
self.give_pre_end = give_pre_end | |
self.tanh_out = tanh_out | |
# compute in_ch_mult, block_in and curr_res at lowest res | |
in_ch_mult = (1,)+tuple(ch_mult) | |
block_in = ch*ch_mult[self.num_resolutions-1] | |
curr_res = resolution // 2**(self.num_resolutions-1) | |
self.z_shape = (1,z_channels,curr_res,curr_res) | |
logging.debug("Working with z of shape {} = {} dimensions.".format( | |
self.z_shape, np.prod(self.z_shape))) | |
# z to block_in | |
self.conv_in = ops.Conv2d(z_channels, | |
block_in, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = resnet_op(in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout) | |
self.mid.attn_1 = attn_op(block_in) | |
self.mid.block_2 = resnet_op(in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout) | |
# upsampling | |
self.up = nn.ModuleList() | |
for i_level in reversed(range(self.num_resolutions)): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_out = ch*ch_mult[i_level] | |
for i_block in range(self.num_res_blocks+1): | |
block.append(resnet_op(in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout)) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(attn_op(block_in)) | |
up = nn.Module() | |
up.block = block | |
up.attn = attn | |
if i_level != 0: | |
up.upsample = Upsample(block_in, resamp_with_conv) | |
curr_res = curr_res * 2 | |
self.up.insert(0, up) # prepend to get consistent order | |
# end | |
self.norm_out = Normalize(block_in) | |
self.conv_out = conv_out_op(block_in, | |
out_ch, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
def forward(self, z, **kwargs): | |
#assert z.shape[1:] == self.z_shape[1:] | |
self.last_z_shape = z.shape | |
# timestep embedding | |
temb = None | |
# z to block_in | |
h = self.conv_in(z) | |
# middle | |
h = self.mid.block_1(h, temb, **kwargs) | |
h = self.mid.attn_1(h, **kwargs) | |
h = self.mid.block_2(h, temb, **kwargs) | |
# upsampling | |
for i_level in reversed(range(self.num_resolutions)): | |
for i_block in range(self.num_res_blocks+1): | |
h = self.up[i_level].block[i_block](h, temb, **kwargs) | |
if len(self.up[i_level].attn) > 0: | |
h = self.up[i_level].attn[i_block](h, **kwargs) | |
if i_level != 0: | |
h = self.up[i_level].upsample(h) | |
# end | |
if self.give_pre_end: | |
return h | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h, **kwargs) | |
if self.tanh_out: | |
h = torch.tanh(h) | |
return h | |