Spaces:
Running
on
Zero
Running
on
Zero
from abc import abstractmethod | |
import torch as th | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
import logging | |
from .util import ( | |
checkpoint, | |
avg_pool_nd, | |
zero_module, | |
timestep_embedding, | |
AlphaBlender, | |
) | |
from ..attention import SpatialTransformer, SpatialVideoTransformer, default | |
from comfy.ldm.util import exists | |
import comfy.ops | |
ops = comfy.ops.disable_weight_init | |
class TimestepBlock(nn.Module): | |
""" | |
Any module where forward() takes timestep embeddings as a second argument. | |
""" | |
def forward(self, x, emb): | |
""" | |
Apply the module to `x` given `emb` timestep embeddings. | |
""" | |
#This is needed because accelerate makes a copy of transformer_options which breaks "transformer_index" | |
def forward_timestep_embed(ts, x, emb, context=None, transformer_options={}, output_shape=None, time_context=None, num_video_frames=None, image_only_indicator=None): | |
for layer in ts: | |
if isinstance(layer, VideoResBlock): | |
x = layer(x, emb, num_video_frames, image_only_indicator) | |
elif isinstance(layer, TimestepBlock): | |
x = layer(x, emb) | |
elif isinstance(layer, SpatialVideoTransformer): | |
x = layer(x, context, time_context, num_video_frames, image_only_indicator, transformer_options) | |
if "transformer_index" in transformer_options: | |
transformer_options["transformer_index"] += 1 | |
elif isinstance(layer, SpatialTransformer): | |
x = layer(x, context, transformer_options) | |
if "transformer_index" in transformer_options: | |
transformer_options["transformer_index"] += 1 | |
elif isinstance(layer, Upsample): | |
x = layer(x, output_shape=output_shape) | |
else: | |
x = layer(x) | |
return x | |
class TimestepEmbedSequential(nn.Sequential, TimestepBlock): | |
""" | |
A sequential module that passes timestep embeddings to the children that | |
support it as an extra input. | |
""" | |
def forward(self, *args, **kwargs): | |
return forward_timestep_embed(self, *args, **kwargs) | |
class Upsample(nn.Module): | |
""" | |
An upsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
upsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
if use_conv: | |
self.conv = operations.conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, dtype=dtype, device=device) | |
def forward(self, x, output_shape=None): | |
assert x.shape[1] == self.channels | |
if self.dims == 3: | |
shape = [x.shape[2], x.shape[3] * 2, x.shape[4] * 2] | |
if output_shape is not None: | |
shape[1] = output_shape[3] | |
shape[2] = output_shape[4] | |
else: | |
shape = [x.shape[2] * 2, x.shape[3] * 2] | |
if output_shape is not None: | |
shape[0] = output_shape[2] | |
shape[1] = output_shape[3] | |
x = F.interpolate(x, size=shape, mode="nearest") | |
if self.use_conv: | |
x = self.conv(x) | |
return x | |
class Downsample(nn.Module): | |
""" | |
A downsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
downsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
stride = 2 if dims != 3 else (1, 2, 2) | |
if use_conv: | |
self.op = operations.conv_nd( | |
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding, dtype=dtype, device=device | |
) | |
else: | |
assert self.channels == self.out_channels | |
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
return self.op(x) | |
class ResBlock(TimestepBlock): | |
""" | |
A residual block that can optionally change the number of channels. | |
:param channels: the number of input channels. | |
:param emb_channels: the number of timestep embedding channels. | |
:param dropout: the rate of dropout. | |
:param out_channels: if specified, the number of out channels. | |
:param use_conv: if True and out_channels is specified, use a spatial | |
convolution instead of a smaller 1x1 convolution to change the | |
channels in the skip connection. | |
:param dims: determines if the signal is 1D, 2D, or 3D. | |
:param use_checkpoint: if True, use gradient checkpointing on this module. | |
:param up: if True, use this block for upsampling. | |
:param down: if True, use this block for downsampling. | |
""" | |
def __init__( | |
self, | |
channels, | |
emb_channels, | |
dropout, | |
out_channels=None, | |
use_conv=False, | |
use_scale_shift_norm=False, | |
dims=2, | |
use_checkpoint=False, | |
up=False, | |
down=False, | |
kernel_size=3, | |
exchange_temb_dims=False, | |
skip_t_emb=False, | |
dtype=None, | |
device=None, | |
operations=ops | |
): | |
super().__init__() | |
self.channels = channels | |
self.emb_channels = emb_channels | |
self.dropout = dropout | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_checkpoint = use_checkpoint | |
self.use_scale_shift_norm = use_scale_shift_norm | |
self.exchange_temb_dims = exchange_temb_dims | |
if isinstance(kernel_size, list): | |
padding = [k // 2 for k in kernel_size] | |
else: | |
padding = kernel_size // 2 | |
self.in_layers = nn.Sequential( | |
operations.GroupNorm(32, channels, dtype=dtype, device=device), | |
nn.SiLU(), | |
operations.conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device), | |
) | |
self.updown = up or down | |
if up: | |
self.h_upd = Upsample(channels, False, dims, dtype=dtype, device=device) | |
self.x_upd = Upsample(channels, False, dims, dtype=dtype, device=device) | |
elif down: | |
self.h_upd = Downsample(channels, False, dims, dtype=dtype, device=device) | |
self.x_upd = Downsample(channels, False, dims, dtype=dtype, device=device) | |
else: | |
self.h_upd = self.x_upd = nn.Identity() | |
self.skip_t_emb = skip_t_emb | |
if self.skip_t_emb: | |
self.emb_layers = None | |
self.exchange_temb_dims = False | |
else: | |
self.emb_layers = nn.Sequential( | |
nn.SiLU(), | |
operations.Linear( | |
emb_channels, | |
2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype, device=device | |
), | |
) | |
self.out_layers = nn.Sequential( | |
operations.GroupNorm(32, self.out_channels, dtype=dtype, device=device), | |
nn.SiLU(), | |
nn.Dropout(p=dropout), | |
operations.conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device) | |
, | |
) | |
if self.out_channels == channels: | |
self.skip_connection = nn.Identity() | |
elif use_conv: | |
self.skip_connection = operations.conv_nd( | |
dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device | |
) | |
else: | |
self.skip_connection = operations.conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device) | |
def forward(self, x, emb): | |
""" | |
Apply the block to a Tensor, conditioned on a timestep embedding. | |
:param x: an [N x C x ...] Tensor of features. | |
:param emb: an [N x emb_channels] Tensor of timestep embeddings. | |
:return: an [N x C x ...] Tensor of outputs. | |
""" | |
return checkpoint( | |
self._forward, (x, emb), self.parameters(), self.use_checkpoint | |
) | |
def _forward(self, x, emb): | |
if self.updown: | |
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] | |
h = in_rest(x) | |
h = self.h_upd(h) | |
x = self.x_upd(x) | |
h = in_conv(h) | |
else: | |
h = self.in_layers(x) | |
emb_out = None | |
if not self.skip_t_emb: | |
emb_out = self.emb_layers(emb).type(h.dtype) | |
while len(emb_out.shape) < len(h.shape): | |
emb_out = emb_out[..., None] | |
if self.use_scale_shift_norm: | |
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] | |
h = out_norm(h) | |
if emb_out is not None: | |
scale, shift = th.chunk(emb_out, 2, dim=1) | |
h *= (1 + scale) | |
h += shift | |
h = out_rest(h) | |
else: | |
if emb_out is not None: | |
if self.exchange_temb_dims: | |
emb_out = emb_out.movedim(1, 2) | |
h = h + emb_out | |
h = self.out_layers(h) | |
return self.skip_connection(x) + h | |
class VideoResBlock(ResBlock): | |
def __init__( | |
self, | |
channels: int, | |
emb_channels: int, | |
dropout: float, | |
video_kernel_size=3, | |
merge_strategy: str = "fixed", | |
merge_factor: float = 0.5, | |
out_channels=None, | |
use_conv: bool = False, | |
use_scale_shift_norm: bool = False, | |
dims: int = 2, | |
use_checkpoint: bool = False, | |
up: bool = False, | |
down: bool = False, | |
dtype=None, | |
device=None, | |
operations=ops | |
): | |
super().__init__( | |
channels, | |
emb_channels, | |
dropout, | |
out_channels=out_channels, | |
use_conv=use_conv, | |
use_scale_shift_norm=use_scale_shift_norm, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
up=up, | |
down=down, | |
dtype=dtype, | |
device=device, | |
operations=operations | |
) | |
self.time_stack = ResBlock( | |
default(out_channels, channels), | |
emb_channels, | |
dropout=dropout, | |
dims=3, | |
out_channels=default(out_channels, channels), | |
use_scale_shift_norm=False, | |
use_conv=False, | |
up=False, | |
down=False, | |
kernel_size=video_kernel_size, | |
use_checkpoint=use_checkpoint, | |
exchange_temb_dims=True, | |
dtype=dtype, | |
device=device, | |
operations=operations | |
) | |
self.time_mixer = AlphaBlender( | |
alpha=merge_factor, | |
merge_strategy=merge_strategy, | |
rearrange_pattern="b t -> b 1 t 1 1", | |
) | |
def forward( | |
self, | |
x: th.Tensor, | |
emb: th.Tensor, | |
num_video_frames: int, | |
image_only_indicator = None, | |
) -> th.Tensor: | |
x = super().forward(x, emb) | |
x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames) | |
x = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames) | |
x = self.time_stack( | |
x, rearrange(emb, "(b t) ... -> b t ...", t=num_video_frames) | |
) | |
x = self.time_mixer( | |
x_spatial=x_mix, x_temporal=x, image_only_indicator=image_only_indicator | |
) | |
x = rearrange(x, "b c t h w -> (b t) c h w") | |
return x | |
class Timestep(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.dim = dim | |
def forward(self, t): | |
return timestep_embedding(t, self.dim) | |
def apply_control(h, control, name): | |
if control is not None and name in control and len(control[name]) > 0: | |
ctrl = control[name].pop() | |
if ctrl is not None: | |
try: | |
h += ctrl | |
except: | |
logging.warning("warning control could not be applied {} {}".format(h.shape, ctrl.shape)) | |
return h | |
class UNetModel(nn.Module): | |
""" | |
The full UNet model with attention and timestep embedding. | |
:param in_channels: channels in the input Tensor. | |
:param model_channels: base channel count for the model. | |
:param out_channels: channels in the output Tensor. | |
:param num_res_blocks: number of residual blocks per downsample. | |
:param dropout: the dropout probability. | |
:param channel_mult: channel multiplier for each level of the UNet. | |
:param conv_resample: if True, use learned convolutions for upsampling and | |
downsampling. | |
:param dims: determines if the signal is 1D, 2D, or 3D. | |
:param num_classes: if specified (as an int), then this model will be | |
class-conditional with `num_classes` classes. | |
:param use_checkpoint: use gradient checkpointing to reduce memory usage. | |
:param num_heads: the number of attention heads in each attention layer. | |
:param num_heads_channels: if specified, ignore num_heads and instead use | |
a fixed channel width per attention head. | |
:param num_heads_upsample: works with num_heads to set a different number | |
of heads for upsampling. Deprecated. | |
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism. | |
:param resblock_updown: use residual blocks for up/downsampling. | |
:param use_new_attention_order: use a different attention pattern for potentially | |
increased efficiency. | |
""" | |
def __init__( | |
self, | |
image_size, | |
in_channels, | |
model_channels, | |
out_channels, | |
num_res_blocks, | |
dropout=0, | |
channel_mult=(1, 2, 4, 8), | |
conv_resample=True, | |
dims=2, | |
num_classes=None, | |
use_checkpoint=False, | |
dtype=th.float32, | |
num_heads=-1, | |
num_head_channels=-1, | |
num_heads_upsample=-1, | |
use_scale_shift_norm=False, | |
resblock_updown=False, | |
use_new_attention_order=False, | |
use_spatial_transformer=False, # custom transformer support | |
transformer_depth=1, # custom transformer support | |
context_dim=None, # custom transformer support | |
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model | |
legacy=True, | |
disable_self_attentions=None, | |
num_attention_blocks=None, | |
disable_middle_self_attn=False, | |
use_linear_in_transformer=False, | |
adm_in_channels=None, | |
transformer_depth_middle=None, | |
transformer_depth_output=None, | |
use_temporal_resblock=False, | |
use_temporal_attention=False, | |
time_context_dim=None, | |
extra_ff_mix_layer=False, | |
use_spatial_context=False, | |
merge_strategy=None, | |
merge_factor=0.0, | |
video_kernel_size=None, | |
disable_temporal_crossattention=False, | |
max_ddpm_temb_period=10000, | |
attn_precision=None, | |
device=None, | |
operations=ops, | |
): | |
super().__init__() | |
if context_dim is not None: | |
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' | |
# from omegaconf.listconfig import ListConfig | |
# if type(context_dim) == ListConfig: | |
# context_dim = list(context_dim) | |
if num_heads_upsample == -1: | |
num_heads_upsample = num_heads | |
if num_heads == -1: | |
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' | |
if num_head_channels == -1: | |
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
self.out_channels = out_channels | |
if isinstance(num_res_blocks, int): | |
self.num_res_blocks = len(channel_mult) * [num_res_blocks] | |
else: | |
if len(num_res_blocks) != len(channel_mult): | |
raise ValueError("provide num_res_blocks either as an int (globally constant) or " | |
"as a list/tuple (per-level) with the same length as channel_mult") | |
self.num_res_blocks = num_res_blocks | |
if disable_self_attentions is not None: | |
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not | |
assert len(disable_self_attentions) == len(channel_mult) | |
if num_attention_blocks is not None: | |
assert len(num_attention_blocks) == len(self.num_res_blocks) | |
transformer_depth = transformer_depth[:] | |
transformer_depth_output = transformer_depth_output[:] | |
self.dropout = dropout | |
self.channel_mult = channel_mult | |
self.conv_resample = conv_resample | |
self.num_classes = num_classes | |
self.use_checkpoint = use_checkpoint | |
self.dtype = dtype | |
self.num_heads = num_heads | |
self.num_head_channels = num_head_channels | |
self.num_heads_upsample = num_heads_upsample | |
self.use_temporal_resblocks = use_temporal_resblock | |
self.predict_codebook_ids = n_embed is not None | |
self.default_num_video_frames = None | |
time_embed_dim = model_channels * 4 | |
self.time_embed = nn.Sequential( | |
operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device), | |
nn.SiLU(), | |
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), | |
) | |
if self.num_classes is not None: | |
if isinstance(self.num_classes, int): | |
self.label_emb = nn.Embedding(num_classes, time_embed_dim, dtype=self.dtype, device=device) | |
elif self.num_classes == "continuous": | |
logging.debug("setting up linear c_adm embedding layer") | |
self.label_emb = nn.Linear(1, time_embed_dim) | |
elif self.num_classes == "sequential": | |
assert adm_in_channels is not None | |
self.label_emb = nn.Sequential( | |
nn.Sequential( | |
operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device), | |
nn.SiLU(), | |
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), | |
) | |
) | |
else: | |
raise ValueError() | |
self.input_blocks = nn.ModuleList( | |
[ | |
TimestepEmbedSequential( | |
operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device) | |
) | |
] | |
) | |
self._feature_size = model_channels | |
input_block_chans = [model_channels] | |
ch = model_channels | |
ds = 1 | |
def get_attention_layer( | |
ch, | |
num_heads, | |
dim_head, | |
depth=1, | |
context_dim=None, | |
use_checkpoint=False, | |
disable_self_attn=False, | |
): | |
if use_temporal_attention: | |
return SpatialVideoTransformer( | |
ch, | |
num_heads, | |
dim_head, | |
depth=depth, | |
context_dim=context_dim, | |
time_context_dim=time_context_dim, | |
dropout=dropout, | |
ff_in=extra_ff_mix_layer, | |
use_spatial_context=use_spatial_context, | |
merge_strategy=merge_strategy, | |
merge_factor=merge_factor, | |
checkpoint=use_checkpoint, | |
use_linear=use_linear_in_transformer, | |
disable_self_attn=disable_self_attn, | |
disable_temporal_crossattention=disable_temporal_crossattention, | |
max_time_embed_period=max_ddpm_temb_period, | |
attn_precision=attn_precision, | |
dtype=self.dtype, device=device, operations=operations | |
) | |
else: | |
return SpatialTransformer( | |
ch, num_heads, dim_head, depth=depth, context_dim=context_dim, | |
disable_self_attn=disable_self_attn, use_linear=use_linear_in_transformer, | |
use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations | |
) | |
def get_resblock( | |
merge_factor, | |
merge_strategy, | |
video_kernel_size, | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels, | |
dims, | |
use_checkpoint, | |
use_scale_shift_norm, | |
down=False, | |
up=False, | |
dtype=None, | |
device=None, | |
operations=ops | |
): | |
if self.use_temporal_resblocks: | |
return VideoResBlock( | |
merge_factor=merge_factor, | |
merge_strategy=merge_strategy, | |
video_kernel_size=video_kernel_size, | |
channels=ch, | |
emb_channels=time_embed_dim, | |
dropout=dropout, | |
out_channels=out_channels, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
down=down, | |
up=up, | |
dtype=dtype, | |
device=device, | |
operations=operations | |
) | |
else: | |
return ResBlock( | |
channels=ch, | |
emb_channels=time_embed_dim, | |
dropout=dropout, | |
out_channels=out_channels, | |
use_checkpoint=use_checkpoint, | |
dims=dims, | |
use_scale_shift_norm=use_scale_shift_norm, | |
down=down, | |
up=up, | |
dtype=dtype, | |
device=device, | |
operations=operations | |
) | |
for level, mult in enumerate(channel_mult): | |
for nr in range(self.num_res_blocks[level]): | |
layers = [ | |
get_resblock( | |
merge_factor=merge_factor, | |
merge_strategy=merge_strategy, | |
video_kernel_size=video_kernel_size, | |
ch=ch, | |
time_embed_dim=time_embed_dim, | |
dropout=dropout, | |
out_channels=mult * model_channels, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
dtype=self.dtype, | |
device=device, | |
operations=operations, | |
) | |
] | |
ch = mult * model_channels | |
num_transformers = transformer_depth.pop(0) | |
if num_transformers > 0: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
#num_heads = 1 | |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
if exists(disable_self_attentions): | |
disabled_sa = disable_self_attentions[level] | |
else: | |
disabled_sa = False | |
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: | |
layers.append(get_attention_layer( | |
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim, | |
disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint) | |
) | |
self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
self._feature_size += ch | |
input_block_chans.append(ch) | |
if level != len(channel_mult) - 1: | |
out_ch = ch | |
self.input_blocks.append( | |
TimestepEmbedSequential( | |
get_resblock( | |
merge_factor=merge_factor, | |
merge_strategy=merge_strategy, | |
video_kernel_size=video_kernel_size, | |
ch=ch, | |
time_embed_dim=time_embed_dim, | |
dropout=dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
down=True, | |
dtype=self.dtype, | |
device=device, | |
operations=operations | |
) | |
if resblock_updown | |
else Downsample( | |
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations | |
) | |
) | |
) | |
ch = out_ch | |
input_block_chans.append(ch) | |
ds *= 2 | |
self._feature_size += ch | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
#num_heads = 1 | |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
mid_block = [ | |
get_resblock( | |
merge_factor=merge_factor, | |
merge_strategy=merge_strategy, | |
video_kernel_size=video_kernel_size, | |
ch=ch, | |
time_embed_dim=time_embed_dim, | |
dropout=dropout, | |
out_channels=None, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
dtype=self.dtype, | |
device=device, | |
operations=operations | |
)] | |
self.middle_block = None | |
if transformer_depth_middle >= -1: | |
if transformer_depth_middle >= 0: | |
mid_block += [get_attention_layer( # always uses a self-attn | |
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim, | |
disable_self_attn=disable_middle_self_attn, use_checkpoint=use_checkpoint | |
), | |
get_resblock( | |
merge_factor=merge_factor, | |
merge_strategy=merge_strategy, | |
video_kernel_size=video_kernel_size, | |
ch=ch, | |
time_embed_dim=time_embed_dim, | |
dropout=dropout, | |
out_channels=None, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
dtype=self.dtype, | |
device=device, | |
operations=operations | |
)] | |
self.middle_block = TimestepEmbedSequential(*mid_block) | |
self._feature_size += ch | |
self.output_blocks = nn.ModuleList([]) | |
for level, mult in list(enumerate(channel_mult))[::-1]: | |
for i in range(self.num_res_blocks[level] + 1): | |
ich = input_block_chans.pop() | |
layers = [ | |
get_resblock( | |
merge_factor=merge_factor, | |
merge_strategy=merge_strategy, | |
video_kernel_size=video_kernel_size, | |
ch=ch + ich, | |
time_embed_dim=time_embed_dim, | |
dropout=dropout, | |
out_channels=model_channels * mult, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
dtype=self.dtype, | |
device=device, | |
operations=operations | |
) | |
] | |
ch = model_channels * mult | |
num_transformers = transformer_depth_output.pop() | |
if num_transformers > 0: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
#num_heads = 1 | |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
if exists(disable_self_attentions): | |
disabled_sa = disable_self_attentions[level] | |
else: | |
disabled_sa = False | |
if not exists(num_attention_blocks) or i < num_attention_blocks[level]: | |
layers.append( | |
get_attention_layer( | |
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim, | |
disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint | |
) | |
) | |
if level and i == self.num_res_blocks[level]: | |
out_ch = ch | |
layers.append( | |
get_resblock( | |
merge_factor=merge_factor, | |
merge_strategy=merge_strategy, | |
video_kernel_size=video_kernel_size, | |
ch=ch, | |
time_embed_dim=time_embed_dim, | |
dropout=dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
up=True, | |
dtype=self.dtype, | |
device=device, | |
operations=operations | |
) | |
if resblock_updown | |
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations) | |
) | |
ds //= 2 | |
self.output_blocks.append(TimestepEmbedSequential(*layers)) | |
self._feature_size += ch | |
self.out = nn.Sequential( | |
operations.GroupNorm(32, ch, dtype=self.dtype, device=device), | |
nn.SiLU(), | |
operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device), | |
) | |
if self.predict_codebook_ids: | |
self.id_predictor = nn.Sequential( | |
operations.GroupNorm(32, ch, dtype=self.dtype, device=device), | |
operations.conv_nd(dims, model_channels, n_embed, 1, dtype=self.dtype, device=device), | |
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits | |
) | |
def forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs): | |
""" | |
Apply the model to an input batch. | |
:param x: an [N x C x ...] Tensor of inputs. | |
:param timesteps: a 1-D batch of timesteps. | |
:param context: conditioning plugged in via crossattn | |
:param y: an [N] Tensor of labels, if class-conditional. | |
:return: an [N x C x ...] Tensor of outputs. | |
""" | |
transformer_options["original_shape"] = list(x.shape) | |
transformer_options["transformer_index"] = 0 | |
transformer_patches = transformer_options.get("patches", {}) | |
num_video_frames = kwargs.get("num_video_frames", self.default_num_video_frames) | |
image_only_indicator = kwargs.get("image_only_indicator", None) | |
time_context = kwargs.get("time_context", None) | |
assert (y is not None) == ( | |
self.num_classes is not None | |
), "must specify y if and only if the model is class-conditional" | |
hs = [] | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype) | |
emb = self.time_embed(t_emb) | |
if "emb_patch" in transformer_patches: | |
patch = transformer_patches["emb_patch"] | |
for p in patch: | |
emb = p(emb, self.model_channels, transformer_options) | |
if self.num_classes is not None: | |
assert y.shape[0] == x.shape[0] | |
emb = emb + self.label_emb(y) | |
h = x | |
for id, module in enumerate(self.input_blocks): | |
transformer_options["block"] = ("input", id) | |
h = forward_timestep_embed(module, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) | |
h = apply_control(h, control, 'input') | |
if "input_block_patch" in transformer_patches: | |
patch = transformer_patches["input_block_patch"] | |
for p in patch: | |
h = p(h, transformer_options) | |
hs.append(h) | |
if "input_block_patch_after_skip" in transformer_patches: | |
patch = transformer_patches["input_block_patch_after_skip"] | |
for p in patch: | |
h = p(h, transformer_options) | |
transformer_options["block"] = ("middle", 0) | |
if self.middle_block is not None: | |
h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) | |
h = apply_control(h, control, 'middle') | |
for id, module in enumerate(self.output_blocks): | |
transformer_options["block"] = ("output", id) | |
hsp = hs.pop() | |
hsp = apply_control(hsp, control, 'output') | |
if "output_block_patch" in transformer_patches: | |
patch = transformer_patches["output_block_patch"] | |
for p in patch: | |
h, hsp = p(h, hsp, transformer_options) | |
h = th.cat([h, hsp], dim=1) | |
del hsp | |
if len(hs) > 0: | |
output_shape = hs[-1].shape | |
else: | |
output_shape = None | |
h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) | |
h = h.type(x.dtype) | |
if self.predict_codebook_ids: | |
return self.id_predictor(h) | |
else: | |
return self.out(h) | |