Spaces:
Sleeping
Sleeping
import math | |
from typing import Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
class DualConv3d(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride: Union[int, Tuple[int, int, int]] = 1, | |
padding: Union[int, Tuple[int, int, int]] = 0, | |
dilation: Union[int, Tuple[int, int, int]] = 1, | |
groups=1, | |
bias=True, | |
): | |
super(DualConv3d, self).__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
# Ensure kernel_size, stride, padding, and dilation are tuples of length 3 | |
if isinstance(kernel_size, int): | |
kernel_size = (kernel_size, kernel_size, kernel_size) | |
if kernel_size == (1, 1, 1): | |
raise ValueError( | |
"kernel_size must be greater than 1. Use make_linear_nd instead." | |
) | |
if isinstance(stride, int): | |
stride = (stride, stride, stride) | |
if isinstance(padding, int): | |
padding = (padding, padding, padding) | |
if isinstance(dilation, int): | |
dilation = (dilation, dilation, dilation) | |
# Set parameters for convolutions | |
self.groups = groups | |
self.bias = bias | |
# Define the size of the channels after the first convolution | |
intermediate_channels = ( | |
out_channels if in_channels < out_channels else in_channels | |
) | |
# Define parameters for the first convolution | |
self.weight1 = nn.Parameter( | |
torch.Tensor( | |
intermediate_channels, | |
in_channels // groups, | |
1, | |
kernel_size[1], | |
kernel_size[2], | |
) | |
) | |
self.stride1 = (1, stride[1], stride[2]) | |
self.padding1 = (0, padding[1], padding[2]) | |
self.dilation1 = (1, dilation[1], dilation[2]) | |
if bias: | |
self.bias1 = nn.Parameter(torch.Tensor(intermediate_channels)) | |
else: | |
self.register_parameter("bias1", None) | |
# Define parameters for the second convolution | |
self.weight2 = nn.Parameter( | |
torch.Tensor( | |
out_channels, intermediate_channels // groups, kernel_size[0], 1, 1 | |
) | |
) | |
self.stride2 = (stride[0], 1, 1) | |
self.padding2 = (padding[0], 0, 0) | |
self.dilation2 = (dilation[0], 1, 1) | |
if bias: | |
self.bias2 = nn.Parameter(torch.Tensor(out_channels)) | |
else: | |
self.register_parameter("bias2", None) | |
# Initialize weights and biases | |
self.reset_parameters() | |
def reset_parameters(self): | |
nn.init.kaiming_uniform_(self.weight1, a=math.sqrt(5)) | |
nn.init.kaiming_uniform_(self.weight2, a=math.sqrt(5)) | |
if self.bias: | |
fan_in1, _ = nn.init._calculate_fan_in_and_fan_out(self.weight1) | |
bound1 = 1 / math.sqrt(fan_in1) | |
nn.init.uniform_(self.bias1, -bound1, bound1) | |
fan_in2, _ = nn.init._calculate_fan_in_and_fan_out(self.weight2) | |
bound2 = 1 / math.sqrt(fan_in2) | |
nn.init.uniform_(self.bias2, -bound2, bound2) | |
def forward(self, x, use_conv3d=False, skip_time_conv=False): | |
if use_conv3d: | |
return self.forward_with_3d(x=x, skip_time_conv=skip_time_conv) | |
else: | |
return self.forward_with_2d(x=x, skip_time_conv=skip_time_conv) | |
def forward_with_3d(self, x, skip_time_conv): | |
# First convolution | |
x = F.conv3d( | |
x, | |
self.weight1, | |
self.bias1, | |
self.stride1, | |
self.padding1, | |
self.dilation1, | |
self.groups, | |
) | |
if skip_time_conv: | |
return x | |
# Second convolution | |
x = F.conv3d( | |
x, | |
self.weight2, | |
self.bias2, | |
self.stride2, | |
self.padding2, | |
self.dilation2, | |
self.groups, | |
) | |
return x | |
def forward_with_2d(self, x, skip_time_conv): | |
b, c, d, h, w = x.shape | |
# First 2D convolution | |
x = rearrange(x, "b c d h w -> (b d) c h w") | |
# Squeeze the depth dimension out of weight1 since it's 1 | |
weight1 = self.weight1.squeeze(2) | |
# Select stride, padding, and dilation for the 2D convolution | |
stride1 = (self.stride1[1], self.stride1[2]) | |
padding1 = (self.padding1[1], self.padding1[2]) | |
dilation1 = (self.dilation1[1], self.dilation1[2]) | |
x = F.conv2d(x, weight1, self.bias1, stride1, padding1, dilation1, self.groups) | |
_, _, h, w = x.shape | |
if skip_time_conv: | |
x = rearrange(x, "(b d) c h w -> b c d h w", b=b) | |
return x | |
# Second convolution which is essentially treated as a 1D convolution across the 'd' dimension | |
x = rearrange(x, "(b d) c h w -> (b h w) c d", b=b) | |
# Reshape weight2 to match the expected dimensions for conv1d | |
weight2 = self.weight2.squeeze(-1).squeeze(-1) | |
# Use only the relevant dimension for stride, padding, and dilation for the 1D convolution | |
stride2 = self.stride2[0] | |
padding2 = self.padding2[0] | |
dilation2 = self.dilation2[0] | |
x = F.conv1d(x, weight2, self.bias2, stride2, padding2, dilation2, self.groups) | |
x = rearrange(x, "(b h w) c d -> b c d h w", b=b, h=h, w=w) | |
return x | |
def weight(self): | |
return self.weight2 | |
def test_dual_conv3d_consistency(): | |
# Initialize parameters | |
in_channels = 3 | |
out_channels = 5 | |
kernel_size = (3, 3, 3) | |
stride = (2, 2, 2) | |
padding = (1, 1, 1) | |
# Create an instance of the DualConv3d class | |
dual_conv3d = DualConv3d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
bias=True, | |
) | |
# Example input tensor | |
test_input = torch.randn(1, 3, 10, 10, 10) | |
# Perform forward passes with both 3D and 2D settings | |
output_conv3d = dual_conv3d(test_input, use_conv3d=True) | |
output_2d = dual_conv3d(test_input, use_conv3d=False) | |
# Assert that the outputs from both methods are sufficiently close | |
assert torch.allclose( | |
output_conv3d, output_2d, atol=1e-6 | |
), "Outputs are not consistent between 3D and 2D convolutions." | |