Spaces:
Running
on
Zero
Running
on
Zero
# original source: | |
# https://github.com/AminRezaei0x443/memory-efficient-attention/blob/1bc0d9e6ac5f82ea43a375135c4e1d3896ee1694/memory_efficient_attention/attention_torch.py | |
# license: | |
# MIT | |
# credit: | |
# Amin Rezaei (original author) | |
# Alex Birch (optimized algorithm for 3D tensors, at the expense of removing bias, masking and callbacks) | |
# implementation of: | |
# Self-attention Does Not Need O(n2) Memory": | |
# https://arxiv.org/abs/2112.05682v2 | |
from functools import partial | |
import torch | |
from torch import Tensor | |
from torch.utils.checkpoint import checkpoint | |
import math | |
import logging | |
try: | |
from typing import Optional, NamedTuple, List, Protocol | |
except ImportError: | |
from typing import Optional, NamedTuple, List | |
from typing_extensions import Protocol | |
from torch import Tensor | |
from typing import List | |
from comfy import model_management | |
def dynamic_slice( | |
x: Tensor, | |
starts: List[int], | |
sizes: List[int], | |
) -> Tensor: | |
slicing = [slice(start, start + size) for start, size in zip(starts, sizes)] | |
return x[slicing] | |
class AttnChunk(NamedTuple): | |
exp_values: Tensor | |
exp_weights_sum: Tensor | |
max_score: Tensor | |
class SummarizeChunk(Protocol): | |
def __call__( | |
query: Tensor, | |
key_t: Tensor, | |
value: Tensor, | |
) -> AttnChunk: ... | |
class ComputeQueryChunkAttn(Protocol): | |
def __call__( | |
query: Tensor, | |
key_t: Tensor, | |
value: Tensor, | |
) -> Tensor: ... | |
def _summarize_chunk( | |
query: Tensor, | |
key_t: Tensor, | |
value: Tensor, | |
scale: float, | |
upcast_attention: bool, | |
mask, | |
) -> AttnChunk: | |
if upcast_attention: | |
with torch.autocast(enabled=False, device_type = 'cuda'): | |
query = query.float() | |
key_t = key_t.float() | |
attn_weights = torch.baddbmm( | |
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype), | |
query, | |
key_t, | |
alpha=scale, | |
beta=0, | |
) | |
else: | |
attn_weights = torch.baddbmm( | |
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype), | |
query, | |
key_t, | |
alpha=scale, | |
beta=0, | |
) | |
max_score, _ = torch.max(attn_weights, -1, keepdim=True) | |
max_score = max_score.detach() | |
attn_weights -= max_score | |
if mask is not None: | |
attn_weights += mask | |
torch.exp(attn_weights, out=attn_weights) | |
exp_weights = attn_weights.to(value.dtype) | |
exp_values = torch.bmm(exp_weights, value) | |
max_score = max_score.squeeze(-1) | |
return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score) | |
def _query_chunk_attention( | |
query: Tensor, | |
key_t: Tensor, | |
value: Tensor, | |
summarize_chunk: SummarizeChunk, | |
kv_chunk_size: int, | |
mask, | |
) -> Tensor: | |
batch_x_heads, k_channels_per_head, k_tokens = key_t.shape | |
_, _, v_channels_per_head = value.shape | |
def chunk_scanner(chunk_idx: int, mask) -> AttnChunk: | |
key_chunk = dynamic_slice( | |
key_t, | |
(0, 0, chunk_idx), | |
(batch_x_heads, k_channels_per_head, kv_chunk_size) | |
) | |
value_chunk = dynamic_slice( | |
value, | |
(0, chunk_idx, 0), | |
(batch_x_heads, kv_chunk_size, v_channels_per_head) | |
) | |
if mask is not None: | |
mask = mask[:,:,chunk_idx:chunk_idx + kv_chunk_size] | |
return summarize_chunk(query, key_chunk, value_chunk, mask=mask) | |
chunks: List[AttnChunk] = [ | |
chunk_scanner(chunk, mask) for chunk in torch.arange(0, k_tokens, kv_chunk_size) | |
] | |
acc_chunk = AttnChunk(*map(torch.stack, zip(*chunks))) | |
chunk_values, chunk_weights, chunk_max = acc_chunk | |
global_max, _ = torch.max(chunk_max, 0, keepdim=True) | |
max_diffs = torch.exp(chunk_max - global_max) | |
chunk_values *= torch.unsqueeze(max_diffs, -1) | |
chunk_weights *= max_diffs | |
all_values = chunk_values.sum(dim=0) | |
all_weights = torch.unsqueeze(chunk_weights, -1).sum(dim=0) | |
return all_values / all_weights | |
# TODO: refactor CrossAttention#get_attention_scores to share code with this | |
def _get_attention_scores_no_kv_chunking( | |
query: Tensor, | |
key_t: Tensor, | |
value: Tensor, | |
scale: float, | |
upcast_attention: bool, | |
mask, | |
) -> Tensor: | |
if upcast_attention: | |
with torch.autocast(enabled=False, device_type = 'cuda'): | |
query = query.float() | |
key_t = key_t.float() | |
attn_scores = torch.baddbmm( | |
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype), | |
query, | |
key_t, | |
alpha=scale, | |
beta=0, | |
) | |
else: | |
attn_scores = torch.baddbmm( | |
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype), | |
query, | |
key_t, | |
alpha=scale, | |
beta=0, | |
) | |
if mask is not None: | |
attn_scores += mask | |
try: | |
attn_probs = attn_scores.softmax(dim=-1) | |
del attn_scores | |
except model_management.OOM_EXCEPTION: | |
logging.warning("ran out of memory while running softmax in _get_attention_scores_no_kv_chunking, trying slower in place softmax instead") | |
attn_scores -= attn_scores.max(dim=-1, keepdim=True).values | |
torch.exp(attn_scores, out=attn_scores) | |
summed = torch.sum(attn_scores, dim=-1, keepdim=True) | |
attn_scores /= summed | |
attn_probs = attn_scores | |
hidden_states_slice = torch.bmm(attn_probs.to(value.dtype), value) | |
return hidden_states_slice | |
class ScannedChunk(NamedTuple): | |
chunk_idx: int | |
attn_chunk: AttnChunk | |
def efficient_dot_product_attention( | |
query: Tensor, | |
key_t: Tensor, | |
value: Tensor, | |
query_chunk_size=1024, | |
kv_chunk_size: Optional[int] = None, | |
kv_chunk_size_min: Optional[int] = None, | |
use_checkpoint=True, | |
upcast_attention=False, | |
mask = None, | |
): | |
"""Computes efficient dot-product attention given query, transposed key, and value. | |
This is efficient version of attention presented in | |
https://arxiv.org/abs/2112.05682v2 which comes with O(sqrt(n)) memory requirements. | |
Args: | |
query: queries for calculating attention with shape of | |
`[batch * num_heads, tokens, channels_per_head]`. | |
key_t: keys for calculating attention with shape of | |
`[batch * num_heads, channels_per_head, tokens]`. | |
value: values to be used in attention with shape of | |
`[batch * num_heads, tokens, channels_per_head]`. | |
query_chunk_size: int: query chunks size | |
kv_chunk_size: Optional[int]: key/value chunks size. if None: defaults to sqrt(key_tokens) | |
kv_chunk_size_min: Optional[int]: key/value minimum chunk size. only considered when kv_chunk_size is None. changes `sqrt(key_tokens)` into `max(sqrt(key_tokens), kv_chunk_size_min)`, to ensure our chunk sizes don't get too small (smaller chunks = more chunks = less concurrent work done). | |
use_checkpoint: bool: whether to use checkpointing (recommended True for training, False for inference) | |
Returns: | |
Output of shape `[batch * num_heads, query_tokens, channels_per_head]`. | |
""" | |
batch_x_heads, q_tokens, q_channels_per_head = query.shape | |
_, _, k_tokens = key_t.shape | |
scale = q_channels_per_head ** -0.5 | |
kv_chunk_size = min(kv_chunk_size or int(math.sqrt(k_tokens)), k_tokens) | |
if kv_chunk_size_min is not None: | |
kv_chunk_size = max(kv_chunk_size, kv_chunk_size_min) | |
if mask is not None and len(mask.shape) == 2: | |
mask = mask.unsqueeze(0) | |
def get_query_chunk(chunk_idx: int) -> Tensor: | |
return dynamic_slice( | |
query, | |
(0, chunk_idx, 0), | |
(batch_x_heads, min(query_chunk_size, q_tokens), q_channels_per_head) | |
) | |
def get_mask_chunk(chunk_idx: int) -> Tensor: | |
if mask is None: | |
return None | |
if mask.shape[1] == 1: | |
return mask | |
chunk = min(query_chunk_size, q_tokens) | |
return mask[:,chunk_idx:chunk_idx + chunk] | |
summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale, upcast_attention=upcast_attention) | |
summarize_chunk: SummarizeChunk = partial(checkpoint, summarize_chunk) if use_checkpoint else summarize_chunk | |
compute_query_chunk_attn: ComputeQueryChunkAttn = partial( | |
_get_attention_scores_no_kv_chunking, | |
scale=scale, | |
upcast_attention=upcast_attention | |
) if k_tokens <= kv_chunk_size else ( | |
# fast-path for when there's just 1 key-value chunk per query chunk (this is just sliced attention btw) | |
partial( | |
_query_chunk_attention, | |
kv_chunk_size=kv_chunk_size, | |
summarize_chunk=summarize_chunk, | |
) | |
) | |
if q_tokens <= query_chunk_size: | |
# fast-path for when there's just 1 query chunk | |
return compute_query_chunk_attn( | |
query=query, | |
key_t=key_t, | |
value=value, | |
mask=mask, | |
) | |
# TODO: maybe we should use torch.empty_like(query) to allocate storage in-advance, | |
# and pass slices to be mutated, instead of torch.cat()ing the returned slices | |
res = torch.cat([ | |
compute_query_chunk_attn( | |
query=get_query_chunk(i * query_chunk_size), | |
key_t=key_t, | |
value=value, | |
mask=get_mask_chunk(i * query_chunk_size) | |
) for i in range(math.ceil(q_tokens / query_chunk_size)) | |
], dim=1) | |
return res | |