Spaces:
Runtime error
Runtime error
import torch | |
import numpy as np | |
from PIL import Image | |
from typing import Union | |
import json, re, os, io, time, platform | |
import re | |
import importlib | |
import model_management | |
import folder_paths | |
from nodes import MAX_RESOLUTION | |
from comfy.utils import common_upscale, ProgressBar | |
script_directory = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | |
folder_paths.add_model_folder_path("kjnodes_fonts", os.path.join(script_directory, "fonts")) | |
class AnyType(str): | |
"""A special class that is always equal in not equal comparisons. Credit to pythongosssss""" | |
def __ne__(self, __value: object) -> bool: | |
return False | |
any = AnyType("*") | |
class BOOLConstant: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"value": ("BOOLEAN", {"default": True}), | |
}, | |
} | |
RETURN_TYPES = ("BOOLEAN",) | |
RETURN_NAMES = ("value",) | |
FUNCTION = "get_value" | |
CATEGORY = "KJNodes/constants" | |
def get_value(self, value): | |
return (value,) | |
class INTConstant: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"value": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), | |
}, | |
} | |
RETURN_TYPES = ("INT",) | |
RETURN_NAMES = ("value",) | |
FUNCTION = "get_value" | |
CATEGORY = "KJNodes/constants" | |
def get_value(self, value): | |
return (value,) | |
class FloatConstant: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"value": ("FLOAT", {"default": 0.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.00001}), | |
}, | |
} | |
RETURN_TYPES = ("FLOAT",) | |
RETURN_NAMES = ("value",) | |
FUNCTION = "get_value" | |
CATEGORY = "KJNodes/constants" | |
def get_value(self, value): | |
return (value,) | |
class StringConstant: | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"string": ("STRING", {"default": '', "multiline": False}), | |
} | |
} | |
RETURN_TYPES = ("STRING",) | |
FUNCTION = "passtring" | |
CATEGORY = "KJNodes/constants" | |
def passtring(self, string): | |
return (string, ) | |
class StringConstantMultiline: | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"string": ("STRING", {"default": "", "multiline": True}), | |
"strip_newlines": ("BOOLEAN", {"default": True}), | |
} | |
} | |
RETURN_TYPES = ("STRING",) | |
FUNCTION = "stringify" | |
CATEGORY = "KJNodes/constants" | |
def stringify(self, string, strip_newlines): | |
new_string = [] | |
for line in io.StringIO(string): | |
if not line.strip().startswith("\n") and strip_newlines: | |
line = line.replace("\n", '') | |
new_string.append(line) | |
new_string = "\n".join(new_string) | |
return (new_string, ) | |
class ScaleBatchPromptSchedule: | |
RETURN_TYPES = ("STRING",) | |
FUNCTION = "scaleschedule" | |
CATEGORY = "KJNodes" | |
DESCRIPTION = """ | |
Scales a batch schedule from Fizz' nodes BatchPromptSchedule | |
to a different frame count. | |
""" | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"input_str": ("STRING", {"forceInput": True,"default": "0:(0.0),\n7:(1.0),\n15:(0.0)\n"}), | |
"old_frame_count": ("INT", {"forceInput": True,"default": 1,"min": 1, "max": 4096, "step": 1}), | |
"new_frame_count": ("INT", {"forceInput": True,"default": 1,"min": 1, "max": 4096, "step": 1}), | |
}, | |
} | |
def scaleschedule(self, old_frame_count, input_str, new_frame_count): | |
pattern = r'"(\d+)"\s*:\s*"(.*?)"(?:,|\Z)' | |
frame_strings = dict(re.findall(pattern, input_str)) | |
# Calculate the scaling factor | |
scaling_factor = (new_frame_count - 1) / (old_frame_count - 1) | |
# Initialize a dictionary to store the new frame numbers and strings | |
new_frame_strings = {} | |
# Iterate over the frame numbers and strings | |
for old_frame, string in frame_strings.items(): | |
# Calculate the new frame number | |
new_frame = int(round(int(old_frame) * scaling_factor)) | |
# Store the new frame number and corresponding string | |
new_frame_strings[new_frame] = string | |
# Format the output string | |
output_str = ', '.join([f'"{k}":"{v}"' for k, v in sorted(new_frame_strings.items())]) | |
return (output_str,) | |
class GetLatentsFromBatchIndexed: | |
RETURN_TYPES = ("LATENT",) | |
FUNCTION = "indexedlatentsfrombatch" | |
CATEGORY = "KJNodes" | |
DESCRIPTION = """ | |
Selects and returns the latents at the specified indices as an latent batch. | |
""" | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"latents": ("LATENT",), | |
"indexes": ("STRING", {"default": "0, 1, 2", "multiline": True}), | |
}, | |
} | |
def indexedlatentsfrombatch(self, latents, indexes): | |
samples = latents.copy() | |
latent_samples = samples["samples"] | |
# Parse the indexes string into a list of integers | |
index_list = [int(index.strip()) for index in indexes.split(',')] | |
# Convert list of indices to a PyTorch tensor | |
indices_tensor = torch.tensor(index_list, dtype=torch.long) | |
# Select the latents at the specified indices | |
chosen_latents = latent_samples[indices_tensor] | |
samples["samples"] = chosen_latents | |
return (samples,) | |
class ConditioningMultiCombine: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"inputcount": ("INT", {"default": 2, "min": 2, "max": 20, "step": 1}), | |
"operation": (["combine", "concat"], {"default": "combine"}), | |
"conditioning_1": ("CONDITIONING", ), | |
"conditioning_2": ("CONDITIONING", ), | |
}, | |
} | |
RETURN_TYPES = ("CONDITIONING", "INT") | |
RETURN_NAMES = ("combined", "inputcount") | |
FUNCTION = "combine" | |
CATEGORY = "KJNodes/masking/conditioning" | |
DESCRIPTION = """ | |
Combines multiple conditioning nodes into one | |
""" | |
def combine(self, inputcount, operation, **kwargs): | |
from nodes import ConditioningCombine | |
from nodes import ConditioningConcat | |
cond_combine_node = ConditioningCombine() | |
cond_concat_node = ConditioningConcat() | |
cond = kwargs["conditioning_1"] | |
for c in range(1, inputcount): | |
new_cond = kwargs[f"conditioning_{c + 1}"] | |
if operation == "combine": | |
cond = cond_combine_node.combine(new_cond, cond)[0] | |
elif operation == "concat": | |
cond = cond_concat_node.concat(cond, new_cond)[0] | |
return (cond, inputcount,) | |
class AppendStringsToList: | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"string1": ("STRING", {"default": '', "forceInput": True}), | |
"string2": ("STRING", {"default": '', "forceInput": True}), | |
} | |
} | |
RETURN_TYPES = ("STRING",) | |
FUNCTION = "joinstring" | |
CATEGORY = "KJNodes/constants" | |
def joinstring(self, string1, string2): | |
if not isinstance(string1, list): | |
string1 = [string1] | |
if not isinstance(string2, list): | |
string2 = [string2] | |
joined_string = string1 + string2 | |
return (joined_string, ) | |
class JoinStrings: | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"string1": ("STRING", {"default": '', "forceInput": True}), | |
"string2": ("STRING", {"default": '', "forceInput": True}), | |
"delimiter": ("STRING", {"default": ' ', "multiline": False}), | |
} | |
} | |
RETURN_TYPES = ("STRING",) | |
FUNCTION = "joinstring" | |
CATEGORY = "KJNodes/constants" | |
def joinstring(self, string1, string2, delimiter): | |
joined_string = string1 + delimiter + string2 | |
return (joined_string, ) | |
class JoinStringMulti: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}), | |
"string_1": ("STRING", {"default": '', "forceInput": True}), | |
"string_2": ("STRING", {"default": '', "forceInput": True}), | |
"delimiter": ("STRING", {"default": ' ', "multiline": False}), | |
"return_list": ("BOOLEAN", {"default": False}), | |
}, | |
} | |
RETURN_TYPES = ("STRING",) | |
RETURN_NAMES = ("string",) | |
FUNCTION = "combine" | |
CATEGORY = "KJNodes" | |
DESCRIPTION = """ | |
Creates single string, or a list of strings, from | |
multiple input strings. | |
You can set how many inputs the node has, | |
with the **inputcount** and clicking update. | |
""" | |
def combine(self, inputcount, delimiter, **kwargs): | |
string = kwargs["string_1"] | |
return_list = kwargs["return_list"] | |
strings = [string] # Initialize a list with the first string | |
for c in range(1, inputcount): | |
new_string = kwargs[f"string_{c + 1}"] | |
if return_list: | |
strings.append(new_string) # Add new string to the list | |
else: | |
string = string + delimiter + new_string | |
if return_list: | |
return (strings,) # Return the list of strings | |
else: | |
return (string,) # Return the combined string | |
class CondPassThrough: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
}, | |
"optional": { | |
"positive": ("CONDITIONING", ), | |
"negative": ("CONDITIONING", ), | |
}, | |
} | |
RETURN_TYPES = ("CONDITIONING", "CONDITIONING",) | |
RETURN_NAMES = ("positive", "negative") | |
FUNCTION = "passthrough" | |
CATEGORY = "KJNodes/misc" | |
DESCRIPTION = """ | |
Simply passes through the positive and negative conditioning, | |
workaround for Set node not allowing bypassed inputs. | |
""" | |
def passthrough(self, positive=None, negative=None): | |
return (positive, negative,) | |
class ModelPassThrough: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
}, | |
"optional": { | |
"model": ("MODEL", ), | |
}, | |
} | |
RETURN_TYPES = ("MODEL", ) | |
RETURN_NAMES = ("model",) | |
FUNCTION = "passthrough" | |
CATEGORY = "KJNodes/misc" | |
DESCRIPTION = """ | |
Simply passes through the model, | |
workaround for Set node not allowing bypassed inputs. | |
""" | |
def passthrough(self, model=None): | |
return (model,) | |
def append_helper(t, mask, c, set_area_to_bounds, strength): | |
n = [t[0], t[1].copy()] | |
_, h, w = mask.shape | |
n[1]['mask'] = mask | |
n[1]['set_area_to_bounds'] = set_area_to_bounds | |
n[1]['mask_strength'] = strength | |
c.append(n) | |
class ConditioningSetMaskAndCombine: | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"positive_1": ("CONDITIONING", ), | |
"negative_1": ("CONDITIONING", ), | |
"positive_2": ("CONDITIONING", ), | |
"negative_2": ("CONDITIONING", ), | |
"mask_1": ("MASK", ), | |
"mask_2": ("MASK", ), | |
"mask_1_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
"mask_2_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
"set_cond_area": (["default", "mask bounds"],), | |
} | |
} | |
RETURN_TYPES = ("CONDITIONING","CONDITIONING",) | |
RETURN_NAMES = ("combined_positive", "combined_negative",) | |
FUNCTION = "append" | |
CATEGORY = "KJNodes/masking/conditioning" | |
DESCRIPTION = """ | |
Bundles multiple conditioning mask and combine nodes into one,functionality is identical to ComfyUI native nodes | |
""" | |
def append(self, positive_1, negative_1, positive_2, negative_2, mask_1, mask_2, set_cond_area, mask_1_strength, mask_2_strength): | |
c = [] | |
c2 = [] | |
set_area_to_bounds = False | |
if set_cond_area != "default": | |
set_area_to_bounds = True | |
if len(mask_1.shape) < 3: | |
mask_1 = mask_1.unsqueeze(0) | |
if len(mask_2.shape) < 3: | |
mask_2 = mask_2.unsqueeze(0) | |
for t in positive_1: | |
append_helper(t, mask_1, c, set_area_to_bounds, mask_1_strength) | |
for t in positive_2: | |
append_helper(t, mask_2, c, set_area_to_bounds, mask_2_strength) | |
for t in negative_1: | |
append_helper(t, mask_1, c2, set_area_to_bounds, mask_1_strength) | |
for t in negative_2: | |
append_helper(t, mask_2, c2, set_area_to_bounds, mask_2_strength) | |
return (c, c2) | |
class ConditioningSetMaskAndCombine3: | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"positive_1": ("CONDITIONING", ), | |
"negative_1": ("CONDITIONING", ), | |
"positive_2": ("CONDITIONING", ), | |
"negative_2": ("CONDITIONING", ), | |
"positive_3": ("CONDITIONING", ), | |
"negative_3": ("CONDITIONING", ), | |
"mask_1": ("MASK", ), | |
"mask_2": ("MASK", ), | |
"mask_3": ("MASK", ), | |
"mask_1_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
"mask_2_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
"mask_3_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
"set_cond_area": (["default", "mask bounds"],), | |
} | |
} | |
RETURN_TYPES = ("CONDITIONING","CONDITIONING",) | |
RETURN_NAMES = ("combined_positive", "combined_negative",) | |
FUNCTION = "append" | |
CATEGORY = "KJNodes/masking/conditioning" | |
DESCRIPTION = """ | |
Bundles multiple conditioning mask and combine nodes into one,functionality is identical to ComfyUI native nodes | |
""" | |
def append(self, positive_1, negative_1, positive_2, positive_3, negative_2, negative_3, mask_1, mask_2, mask_3, set_cond_area, mask_1_strength, mask_2_strength, mask_3_strength): | |
c = [] | |
c2 = [] | |
set_area_to_bounds = False | |
if set_cond_area != "default": | |
set_area_to_bounds = True | |
if len(mask_1.shape) < 3: | |
mask_1 = mask_1.unsqueeze(0) | |
if len(mask_2.shape) < 3: | |
mask_2 = mask_2.unsqueeze(0) | |
if len(mask_3.shape) < 3: | |
mask_3 = mask_3.unsqueeze(0) | |
for t in positive_1: | |
append_helper(t, mask_1, c, set_area_to_bounds, mask_1_strength) | |
for t in positive_2: | |
append_helper(t, mask_2, c, set_area_to_bounds, mask_2_strength) | |
for t in positive_3: | |
append_helper(t, mask_3, c, set_area_to_bounds, mask_3_strength) | |
for t in negative_1: | |
append_helper(t, mask_1, c2, set_area_to_bounds, mask_1_strength) | |
for t in negative_2: | |
append_helper(t, mask_2, c2, set_area_to_bounds, mask_2_strength) | |
for t in negative_3: | |
append_helper(t, mask_3, c2, set_area_to_bounds, mask_3_strength) | |
return (c, c2) | |
class ConditioningSetMaskAndCombine4: | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"positive_1": ("CONDITIONING", ), | |
"negative_1": ("CONDITIONING", ), | |
"positive_2": ("CONDITIONING", ), | |
"negative_2": ("CONDITIONING", ), | |
"positive_3": ("CONDITIONING", ), | |
"negative_3": ("CONDITIONING", ), | |
"positive_4": ("CONDITIONING", ), | |
"negative_4": ("CONDITIONING", ), | |
"mask_1": ("MASK", ), | |
"mask_2": ("MASK", ), | |
"mask_3": ("MASK", ), | |
"mask_4": ("MASK", ), | |
"mask_1_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
"mask_2_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
"mask_3_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
"mask_4_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
"set_cond_area": (["default", "mask bounds"],), | |
} | |
} | |
RETURN_TYPES = ("CONDITIONING","CONDITIONING",) | |
RETURN_NAMES = ("combined_positive", "combined_negative",) | |
FUNCTION = "append" | |
CATEGORY = "KJNodes/masking/conditioning" | |
DESCRIPTION = """ | |
Bundles multiple conditioning mask and combine nodes into one,functionality is identical to ComfyUI native nodes | |
""" | |
def append(self, positive_1, negative_1, positive_2, positive_3, positive_4, negative_2, negative_3, negative_4, mask_1, mask_2, mask_3, mask_4, set_cond_area, mask_1_strength, mask_2_strength, mask_3_strength, mask_4_strength): | |
c = [] | |
c2 = [] | |
set_area_to_bounds = False | |
if set_cond_area != "default": | |
set_area_to_bounds = True | |
if len(mask_1.shape) < 3: | |
mask_1 = mask_1.unsqueeze(0) | |
if len(mask_2.shape) < 3: | |
mask_2 = mask_2.unsqueeze(0) | |
if len(mask_3.shape) < 3: | |
mask_3 = mask_3.unsqueeze(0) | |
if len(mask_4.shape) < 3: | |
mask_4 = mask_4.unsqueeze(0) | |
for t in positive_1: | |
append_helper(t, mask_1, c, set_area_to_bounds, mask_1_strength) | |
for t in positive_2: | |
append_helper(t, mask_2, c, set_area_to_bounds, mask_2_strength) | |
for t in positive_3: | |
append_helper(t, mask_3, c, set_area_to_bounds, mask_3_strength) | |
for t in positive_4: | |
append_helper(t, mask_4, c, set_area_to_bounds, mask_4_strength) | |
for t in negative_1: | |
append_helper(t, mask_1, c2, set_area_to_bounds, mask_1_strength) | |
for t in negative_2: | |
append_helper(t, mask_2, c2, set_area_to_bounds, mask_2_strength) | |
for t in negative_3: | |
append_helper(t, mask_3, c2, set_area_to_bounds, mask_3_strength) | |
for t in negative_4: | |
append_helper(t, mask_4, c2, set_area_to_bounds, mask_4_strength) | |
return (c, c2) | |
class ConditioningSetMaskAndCombine5: | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"positive_1": ("CONDITIONING", ), | |
"negative_1": ("CONDITIONING", ), | |
"positive_2": ("CONDITIONING", ), | |
"negative_2": ("CONDITIONING", ), | |
"positive_3": ("CONDITIONING", ), | |
"negative_3": ("CONDITIONING", ), | |
"positive_4": ("CONDITIONING", ), | |
"negative_4": ("CONDITIONING", ), | |
"positive_5": ("CONDITIONING", ), | |
"negative_5": ("CONDITIONING", ), | |
"mask_1": ("MASK", ), | |
"mask_2": ("MASK", ), | |
"mask_3": ("MASK", ), | |
"mask_4": ("MASK", ), | |
"mask_5": ("MASK", ), | |
"mask_1_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
"mask_2_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
"mask_3_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
"mask_4_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
"mask_5_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
"set_cond_area": (["default", "mask bounds"],), | |
} | |
} | |
RETURN_TYPES = ("CONDITIONING","CONDITIONING",) | |
RETURN_NAMES = ("combined_positive", "combined_negative",) | |
FUNCTION = "append" | |
CATEGORY = "KJNodes/masking/conditioning" | |
DESCRIPTION = """ | |
Bundles multiple conditioning mask and combine nodes into one,functionality is identical to ComfyUI native nodes | |
""" | |
def append(self, positive_1, negative_1, positive_2, positive_3, positive_4, positive_5, negative_2, negative_3, negative_4, negative_5, mask_1, mask_2, mask_3, mask_4, mask_5, set_cond_area, mask_1_strength, mask_2_strength, mask_3_strength, mask_4_strength, mask_5_strength): | |
c = [] | |
c2 = [] | |
set_area_to_bounds = False | |
if set_cond_area != "default": | |
set_area_to_bounds = True | |
if len(mask_1.shape) < 3: | |
mask_1 = mask_1.unsqueeze(0) | |
if len(mask_2.shape) < 3: | |
mask_2 = mask_2.unsqueeze(0) | |
if len(mask_3.shape) < 3: | |
mask_3 = mask_3.unsqueeze(0) | |
if len(mask_4.shape) < 3: | |
mask_4 = mask_4.unsqueeze(0) | |
if len(mask_5.shape) < 3: | |
mask_5 = mask_5.unsqueeze(0) | |
for t in positive_1: | |
append_helper(t, mask_1, c, set_area_to_bounds, mask_1_strength) | |
for t in positive_2: | |
append_helper(t, mask_2, c, set_area_to_bounds, mask_2_strength) | |
for t in positive_3: | |
append_helper(t, mask_3, c, set_area_to_bounds, mask_3_strength) | |
for t in positive_4: | |
append_helper(t, mask_4, c, set_area_to_bounds, mask_4_strength) | |
for t in positive_5: | |
append_helper(t, mask_5, c, set_area_to_bounds, mask_5_strength) | |
for t in negative_1: | |
append_helper(t, mask_1, c2, set_area_to_bounds, mask_1_strength) | |
for t in negative_2: | |
append_helper(t, mask_2, c2, set_area_to_bounds, mask_2_strength) | |
for t in negative_3: | |
append_helper(t, mask_3, c2, set_area_to_bounds, mask_3_strength) | |
for t in negative_4: | |
append_helper(t, mask_4, c2, set_area_to_bounds, mask_4_strength) | |
for t in negative_5: | |
append_helper(t, mask_5, c2, set_area_to_bounds, mask_5_strength) | |
return (c, c2) | |
class VRAM_Debug: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"empty_cache": ("BOOLEAN", {"default": True}), | |
"gc_collect": ("BOOLEAN", {"default": True}), | |
"unload_all_models": ("BOOLEAN", {"default": False}), | |
}, | |
"optional": { | |
"any_input": (any, {}), | |
"image_pass": ("IMAGE",), | |
"model_pass": ("MODEL",), | |
} | |
} | |
RETURN_TYPES = (any, "IMAGE","MODEL","INT", "INT",) | |
RETURN_NAMES = ("any_output", "image_pass", "model_pass", "freemem_before", "freemem_after") | |
FUNCTION = "VRAMdebug" | |
CATEGORY = "KJNodes/misc" | |
DESCRIPTION = """ | |
Returns the inputs unchanged, they are only used as triggers, | |
and performs comfy model management functions and garbage collection, | |
reports free VRAM before and after the operations. | |
""" | |
def VRAMdebug(self, gc_collect, empty_cache, unload_all_models, image_pass=None, model_pass=None, any_input=None): | |
freemem_before = model_management.get_free_memory() | |
print("VRAMdebug: free memory before: ", f"{freemem_before:,.0f}") | |
if empty_cache: | |
model_management.soft_empty_cache() | |
if unload_all_models: | |
model_management.unload_all_models() | |
if gc_collect: | |
import gc | |
gc.collect() | |
freemem_after = model_management.get_free_memory() | |
print("VRAMdebug: free memory after: ", f"{freemem_after:,.0f}") | |
print("VRAMdebug: freed memory: ", f"{freemem_after - freemem_before:,.0f}") | |
return {"ui": { | |
"text": [f"{freemem_before:,.0f}x{freemem_after:,.0f}"]}, | |
"result": (any_input, image_pass, model_pass, freemem_before, freemem_after) | |
} | |
class SomethingToString: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"input": (any, {}), | |
}, | |
"optional": { | |
"prefix": ("STRING", {"default": ""}), | |
"suffix": ("STRING", {"default": ""}), | |
} | |
} | |
RETURN_TYPES = ("STRING",) | |
FUNCTION = "stringify" | |
CATEGORY = "KJNodes/text" | |
DESCRIPTION = """ | |
Converts any type to a string. | |
""" | |
def stringify(self, input, prefix="", suffix=""): | |
if isinstance(input, (int, float, bool)): | |
stringified = str(input) | |
elif isinstance(input, list): | |
stringified = ', '.join(str(item) for item in input) | |
else: | |
return | |
if prefix: # Check if prefix is not empty | |
stringified = prefix + stringified # Add the prefix | |
if suffix: # Check if suffix is not empty | |
stringified = stringified + suffix # Add the suffix | |
return (stringified,) | |
class Sleep: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"input": (any, {}), | |
"minutes": ("INT", {"default": 0, "min": 0, "max": 1439}), | |
"seconds": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 59.99, "step": 0.01}), | |
}, | |
} | |
RETURN_TYPES = (any,) | |
FUNCTION = "sleepdelay" | |
CATEGORY = "KJNodes/misc" | |
DESCRIPTION = """ | |
Delays the execution for the input amount of time. | |
""" | |
def sleepdelay(self, input, minutes, seconds): | |
total_seconds = minutes * 60 + seconds | |
time.sleep(total_seconds) | |
return input, | |
class EmptyLatentImagePresets: | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"dimensions": ( | |
[ | |
'512 x 512 (1:1)', | |
'768 x 512 (1.5:1)', | |
'960 x 512 (1.875:1)', | |
'1024 x 512 (2:1)', | |
'1024 x 576 (1.778:1)', | |
'1536 x 640 (2.4:1)', | |
'1344 x 768 (1.75:1)', | |
'1216 x 832 (1.46:1)', | |
'1152 x 896 (1.286:1)', | |
'1024 x 1024 (1:1)', | |
], | |
{ | |
"default": '512 x 512 (1:1)' | |
}), | |
"invert": ("BOOLEAN", {"default": False}), | |
"batch_size": ("INT", { | |
"default": 1, | |
"min": 1, | |
"max": 4096 | |
}), | |
}, | |
} | |
RETURN_TYPES = ("LATENT", "INT", "INT") | |
RETURN_NAMES = ("Latent", "Width", "Height") | |
FUNCTION = "generate" | |
CATEGORY = "KJNodes" | |
def generate(self, dimensions, invert, batch_size): | |
from nodes import EmptyLatentImage | |
result = [x.strip() for x in dimensions.split('x')] | |
# Remove the aspect ratio part | |
result[0] = result[0].split('(')[0].strip() | |
result[1] = result[1].split('(')[0].strip() | |
if invert: | |
width = int(result[1].split(' ')[0]) | |
height = int(result[0]) | |
else: | |
width = int(result[0]) | |
height = int(result[1].split(' ')[0]) | |
latent = EmptyLatentImage().generate(width, height, batch_size)[0] | |
return (latent, int(width), int(height),) | |
class EmptyLatentImageCustomPresets: | |
def INPUT_TYPES(cls): | |
try: | |
with open(os.path.join(script_directory, 'custom_dimensions.json')) as f: | |
dimensions_dict = json.load(f) | |
except FileNotFoundError: | |
dimensions_dict = [] | |
return { | |
"required": { | |
"dimensions": ( | |
[f"{d['label']} - {d['value']}" for d in dimensions_dict], | |
), | |
"invert": ("BOOLEAN", {"default": False}), | |
"batch_size": ("INT", { | |
"default": 1, | |
"min": 1, | |
"max": 4096 | |
}), | |
}, | |
} | |
RETURN_TYPES = ("LATENT", "INT", "INT") | |
RETURN_NAMES = ("Latent", "Width", "Height") | |
FUNCTION = "generate" | |
CATEGORY = "KJNodes" | |
DESCRIPTION = """ | |
Generates an empty latent image with the specified dimensions. | |
The choices are loaded from 'custom_dimensions.json' in the nodes folder. | |
""" | |
def generate(self, dimensions, invert, batch_size): | |
from nodes import EmptyLatentImage | |
# Split the string into label and value | |
label, value = dimensions.split(' - ') | |
# Split the value into width and height | |
width, height = [x.strip() for x in value.split('x')] | |
if invert: | |
width, height = height, width | |
latent = EmptyLatentImage().generate(int(width), int(height), batch_size)[0] | |
return (latent, int(width), int(height),) | |
class WidgetToString: | |
def IS_CHANGED(cls, **kwargs): | |
return float("NaN") | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"id": ("INT", {"default": 0}), | |
"widget_name": ("STRING", {"multiline": False}), | |
"return_all": ("BOOLEAN", {"default": False}), | |
}, | |
"optional": { | |
"any_input": (any, {}), | |
"node_title": ("STRING", {"multiline": False}), | |
}, | |
"hidden": {"extra_pnginfo": "EXTRA_PNGINFO", | |
"prompt": "PROMPT", | |
"unique_id": "UNIQUE_ID",}, | |
} | |
RETURN_TYPES = ("STRING", ) | |
FUNCTION = "get_widget_value" | |
CATEGORY = "KJNodes/text" | |
DESCRIPTION = """ | |
Selects a node and it's specified widget and outputs the value as a string. | |
If no node id or title is provided it will use the 'any_input' link and use that node. | |
To see node id's, enable node id display from Manager badge menu. | |
Alternatively you can search with the node title. Node titles ONLY exist if they | |
are manually edited! | |
The 'any_input' is required for making sure the node you want the value from exists in the workflow. | |
""" | |
def get_widget_value(self, id, widget_name, extra_pnginfo, prompt, unique_id, return_all=False, any_input=None, node_title=""): | |
workflow = extra_pnginfo["workflow"] | |
#print(json.dumps(workflow, indent=4)) | |
results = [] | |
node_id = None # Initialize node_id to handle cases where no match is found | |
link_id = None | |
link_to_node_map = {} | |
for node in workflow["nodes"]: | |
if node_title: | |
if "title" in node: | |
if node["title"] == node_title: | |
node_id = node["id"] | |
break | |
else: | |
print("Node title not found.") | |
elif id != 0: | |
if node["id"] == id: | |
node_id = id | |
break | |
elif any_input is not None: | |
if node["type"] == "WidgetToString" and node["id"] == int(unique_id) and not link_id: | |
for node_input in node["inputs"]: | |
if node_input["name"] == "any_input": | |
link_id = node_input["link"] | |
# Construct a map of links to node IDs for future reference | |
node_outputs = node.get("outputs", None) | |
if not node_outputs: | |
continue | |
for output in node_outputs: | |
node_links = output.get("links", None) | |
if not node_links: | |
continue | |
for link in node_links: | |
link_to_node_map[link] = node["id"] | |
if link_id and link == link_id: | |
break | |
if link_id: | |
node_id = link_to_node_map.get(link_id, None) | |
if node_id is None: | |
raise ValueError("No matching node found for the given title or id") | |
values = prompt[str(node_id)] | |
if "inputs" in values: | |
if return_all: | |
results.append(', '.join(f'{k}: {str(v)}' for k, v in values["inputs"].items())) | |
elif widget_name in values["inputs"]: | |
v = str(values["inputs"][widget_name]) # Convert to string here | |
return (v, ) | |
else: | |
raise NameError(f"Widget not found: {node_id}.{widget_name}") | |
if not results: | |
raise NameError(f"Node not found: {node_id}") | |
return (', '.join(results).strip(', '), ) | |
class DummyOut: | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"any_input": (any, {}), | |
} | |
} | |
RETURN_TYPES = (any,) | |
FUNCTION = "dummy" | |
CATEGORY = "KJNodes/misc" | |
OUTPUT_NODE = True | |
DESCRIPTION = """ | |
Does nothing, used to trigger generic workflow output. | |
A way to get previews in the UI without saving anything to disk. | |
""" | |
def dummy(self, any_input): | |
return (any_input,) | |
class FlipSigmasAdjusted: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"sigmas": ("SIGMAS", ), | |
"divide_by_last_sigma": ("BOOLEAN", {"default": False}), | |
"divide_by": ("FLOAT", {"default": 1,"min": 1, "max": 255, "step": 0.01}), | |
"offset_by": ("INT", {"default": 1,"min": -100, "max": 100, "step": 1}), | |
} | |
} | |
RETURN_TYPES = ("SIGMAS", "STRING",) | |
RETURN_NAMES = ("SIGMAS", "sigmas_string",) | |
CATEGORY = "KJNodes/noise" | |
FUNCTION = "get_sigmas_adjusted" | |
def get_sigmas_adjusted(self, sigmas, divide_by_last_sigma, divide_by, offset_by): | |
sigmas = sigmas.flip(0) | |
if sigmas[0] == 0: | |
sigmas[0] = 0.0001 | |
adjusted_sigmas = sigmas.clone() | |
#offset sigma | |
for i in range(1, len(sigmas)): | |
offset_index = i - offset_by | |
if 0 <= offset_index < len(sigmas): | |
adjusted_sigmas[i] = sigmas[offset_index] | |
else: | |
adjusted_sigmas[i] = 0.0001 | |
if adjusted_sigmas[0] == 0: | |
adjusted_sigmas[0] = 0.0001 | |
if divide_by_last_sigma: | |
adjusted_sigmas = adjusted_sigmas / adjusted_sigmas[-1] | |
sigma_np_array = adjusted_sigmas.numpy() | |
array_string = np.array2string(sigma_np_array, precision=2, separator=', ', threshold=np.inf) | |
adjusted_sigmas = adjusted_sigmas / divide_by | |
return (adjusted_sigmas, array_string,) | |
class CustomSigmas: | |
def INPUT_TYPES(s): | |
return {"required": | |
{ | |
"sigmas_string" :("STRING", {"default": "14.615, 6.475, 3.861, 2.697, 1.886, 1.396, 0.963, 0.652, 0.399, 0.152, 0.029","multiline": True}), | |
"interpolate_to_steps": ("INT", {"default": 10,"min": 0, "max": 255, "step": 1}), | |
} | |
} | |
RETURN_TYPES = ("SIGMAS",) | |
RETURN_NAMES = ("SIGMAS",) | |
CATEGORY = "KJNodes/noise" | |
FUNCTION = "customsigmas" | |
DESCRIPTION = """ | |
Creates a sigmas tensor from a string of comma separated values. | |
Examples: | |
Nvidia's optimized AYS 10 step schedule for SD 1.5: | |
14.615, 6.475, 3.861, 2.697, 1.886, 1.396, 0.963, 0.652, 0.399, 0.152, 0.029 | |
SDXL: | |
14.615, 6.315, 3.771, 2.181, 1.342, 0.862, 0.555, 0.380, 0.234, 0.113, 0.029 | |
SVD: | |
700.00, 54.5, 15.886, 7.977, 4.248, 1.789, 0.981, 0.403, 0.173, 0.034, 0.002 | |
""" | |
def customsigmas(self, sigmas_string, interpolate_to_steps): | |
sigmas_list = sigmas_string.split(', ') | |
sigmas_float_list = [float(sigma) for sigma in sigmas_list] | |
sigmas_tensor = torch.FloatTensor(sigmas_float_list) | |
if len(sigmas_tensor) != interpolate_to_steps + 1: | |
sigmas_tensor = self.loglinear_interp(sigmas_tensor, interpolate_to_steps + 1) | |
sigmas_tensor[-1] = 0 | |
return (sigmas_tensor.float(),) | |
def loglinear_interp(self, t_steps, num_steps): | |
""" | |
Performs log-linear interpolation of a given array of decreasing numbers. | |
""" | |
t_steps_np = t_steps.numpy() | |
xs = np.linspace(0, 1, len(t_steps_np)) | |
ys = np.log(t_steps_np[::-1]) | |
new_xs = np.linspace(0, 1, num_steps) | |
new_ys = np.interp(new_xs, xs, ys) | |
interped_ys = np.exp(new_ys)[::-1].copy() | |
interped_ys_tensor = torch.tensor(interped_ys) | |
return interped_ys_tensor | |
class InjectNoiseToLatent: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"latents":("LATENT",), | |
"strength": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 200.0, "step": 0.0001}), | |
"noise": ("LATENT",), | |
"normalize": ("BOOLEAN", {"default": False}), | |
"average": ("BOOLEAN", {"default": False}), | |
}, | |
"optional":{ | |
"mask": ("MASK", ), | |
"mix_randn_amount": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1000.0, "step": 0.001}), | |
"seed": ("INT", {"default": 123,"min": 0, "max": 0xffffffffffffffff, "step": 1}), | |
} | |
} | |
RETURN_TYPES = ("LATENT",) | |
FUNCTION = "injectnoise" | |
CATEGORY = "KJNodes/noise" | |
def injectnoise(self, latents, strength, noise, normalize, average, mix_randn_amount=0, seed=None, mask=None): | |
samples = latents.copy() | |
if latents["samples"].shape != noise["samples"].shape: | |
raise ValueError("InjectNoiseToLatent: Latent and noise must have the same shape") | |
if average: | |
noised = (samples["samples"].clone() + noise["samples"].clone()) / 2 | |
else: | |
noised = samples["samples"].clone() + noise["samples"].clone() * strength | |
if normalize: | |
noised = noised / noised.std() | |
if mask is not None: | |
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(noised.shape[2], noised.shape[3]), mode="bilinear") | |
mask = mask.expand((-1,noised.shape[1],-1,-1)) | |
if mask.shape[0] < noised.shape[0]: | |
mask = mask.repeat((noised.shape[0] -1) // mask.shape[0] + 1, 1, 1, 1)[:noised.shape[0]] | |
noised = mask * noised + (1-mask) * latents["samples"] | |
if mix_randn_amount > 0: | |
if seed is not None: | |
generator = torch.manual_seed(seed) | |
rand_noise = torch.randn(noised.size(), dtype=noised.dtype, layout=noised.layout, generator=generator, device="cpu") | |
noised = noised + (mix_randn_amount * rand_noise) | |
samples["samples"] = noised | |
return (samples,) | |
class SoundReactive: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"sound_level": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 99999, "step": 0.01}), | |
"start_range_hz": ("INT", {"default": 150, "min": 0, "max": 9999, "step": 1}), | |
"end_range_hz": ("INT", {"default": 2000, "min": 0, "max": 9999, "step": 1}), | |
"multiplier": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 99999, "step": 0.01}), | |
"smoothing_factor": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}), | |
"normalize": ("BOOLEAN", {"default": False}), | |
}, | |
} | |
RETURN_TYPES = ("FLOAT","INT",) | |
RETURN_NAMES =("sound_level", "sound_level_int",) | |
FUNCTION = "react" | |
CATEGORY = "KJNodes/audio" | |
DESCRIPTION = """ | |
Reacts to the sound level of the input. | |
Uses your browsers sound input options and requires. | |
Meant to be used with realtime diffusion with autoqueue. | |
""" | |
def react(self, sound_level, start_range_hz, end_range_hz, smoothing_factor, multiplier, normalize): | |
sound_level *= multiplier | |
if normalize: | |
sound_level /= 255 | |
sound_level_int = int(sound_level) | |
return (sound_level, sound_level_int, ) | |
class GenerateNoise: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}), | |
"height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}), | |
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), | |
"seed": ("INT", {"default": 123,"min": 0, "max": 0xffffffffffffffff, "step": 1}), | |
"multiplier": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 4096, "step": 0.01}), | |
"constant_batch_noise": ("BOOLEAN", {"default": False}), | |
"normalize": ("BOOLEAN", {"default": False}), | |
}, | |
"optional": { | |
"model": ("MODEL", ), | |
"sigmas": ("SIGMAS", ), | |
"latent_channels": ( | |
[ '4', | |
'16', | |
], | |
), | |
} | |
} | |
RETURN_TYPES = ("LATENT",) | |
FUNCTION = "generatenoise" | |
CATEGORY = "KJNodes/noise" | |
DESCRIPTION = """ | |
Generates noise for injection or to be used as empty latents on samplers with add_noise off. | |
""" | |
def generatenoise(self, batch_size, width, height, seed, multiplier, constant_batch_noise, normalize, sigmas=None, model=None, latent_channels=4): | |
generator = torch.manual_seed(seed) | |
noise = torch.randn([batch_size, int(latent_channels), height // 8, width // 8], dtype=torch.float32, layout=torch.strided, generator=generator, device="cpu") | |
if sigmas is not None: | |
sigma = sigmas[0] - sigmas[-1] | |
sigma /= model.model.latent_format.scale_factor | |
noise *= sigma | |
noise *=multiplier | |
if normalize: | |
noise = noise / noise.std() | |
if constant_batch_noise: | |
noise = noise[0].repeat(batch_size, 1, 1, 1) | |
return ({"samples":noise}, ) | |
def camera_embeddings(elevation, azimuth): | |
elevation = torch.as_tensor([elevation]) | |
azimuth = torch.as_tensor([azimuth]) | |
embeddings = torch.stack( | |
[ | |
torch.deg2rad( | |
(90 - elevation) - (90) | |
), # Zero123 polar is 90-elevation | |
torch.sin(torch.deg2rad(azimuth)), | |
torch.cos(torch.deg2rad(azimuth)), | |
torch.deg2rad( | |
90 - torch.full_like(elevation, 0) | |
), | |
], dim=-1).unsqueeze(1) | |
return embeddings | |
def interpolate_angle(start, end, fraction): | |
# Calculate the difference in angles and adjust for wraparound if necessary | |
diff = (end - start + 540) % 360 - 180 | |
# Apply fraction to the difference | |
interpolated = start + fraction * diff | |
# Normalize the result to be within the range of -180 to 180 | |
return (interpolated + 180) % 360 - 180 | |
class StableZero123_BatchSchedule: | |
def INPUT_TYPES(s): | |
return {"required": { "clip_vision": ("CLIP_VISION",), | |
"init_image": ("IMAGE",), | |
"vae": ("VAE",), | |
"width": ("INT", {"default": 256, "min": 16, "max": MAX_RESOLUTION, "step": 8}), | |
"height": ("INT", {"default": 256, "min": 16, "max": MAX_RESOLUTION, "step": 8}), | |
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), | |
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out"],), | |
"azimuth_points_string": ("STRING", {"default": "0:(0.0),\n7:(1.0),\n15:(0.0)\n", "multiline": True}), | |
"elevation_points_string": ("STRING", {"default": "0:(0.0),\n7:(0.0),\n15:(0.0)\n", "multiline": True}), | |
}} | |
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") | |
RETURN_NAMES = ("positive", "negative", "latent") | |
FUNCTION = "encode" | |
CATEGORY = "KJNodes/experimental" | |
def encode(self, clip_vision, init_image, vae, width, height, batch_size, azimuth_points_string, elevation_points_string, interpolation): | |
output = clip_vision.encode_image(init_image) | |
pooled = output.image_embeds.unsqueeze(0) | |
pixels = common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1) | |
encode_pixels = pixels[:,:,:,:3] | |
t = vae.encode(encode_pixels) | |
def ease_in(t): | |
return t * t | |
def ease_out(t): | |
return 1 - (1 - t) * (1 - t) | |
def ease_in_out(t): | |
return 3 * t * t - 2 * t * t * t | |
# Parse the azimuth input string into a list of tuples | |
azimuth_points = [] | |
azimuth_points_string = azimuth_points_string.rstrip(',\n') | |
for point_str in azimuth_points_string.split(','): | |
frame_str, azimuth_str = point_str.split(':') | |
frame = int(frame_str.strip()) | |
azimuth = float(azimuth_str.strip()[1:-1]) | |
azimuth_points.append((frame, azimuth)) | |
# Sort the points by frame number | |
azimuth_points.sort(key=lambda x: x[0]) | |
# Parse the elevation input string into a list of tuples | |
elevation_points = [] | |
elevation_points_string = elevation_points_string.rstrip(',\n') | |
for point_str in elevation_points_string.split(','): | |
frame_str, elevation_str = point_str.split(':') | |
frame = int(frame_str.strip()) | |
elevation_val = float(elevation_str.strip()[1:-1]) | |
elevation_points.append((frame, elevation_val)) | |
# Sort the points by frame number | |
elevation_points.sort(key=lambda x: x[0]) | |
# Index of the next point to interpolate towards | |
next_point = 1 | |
next_elevation_point = 1 | |
positive_cond_out = [] | |
positive_pooled_out = [] | |
negative_cond_out = [] | |
negative_pooled_out = [] | |
#azimuth interpolation | |
for i in range(batch_size): | |
# Find the interpolated azimuth for the current frame | |
while next_point < len(azimuth_points) and i >= azimuth_points[next_point][0]: | |
next_point += 1 | |
# If next_point is equal to the length of points, we've gone past the last point | |
if next_point == len(azimuth_points): | |
next_point -= 1 # Set next_point to the last index of points | |
prev_point = max(next_point - 1, 0) # Ensure prev_point is not less than 0 | |
# Calculate fraction | |
if azimuth_points[next_point][0] != azimuth_points[prev_point][0]: # Prevent division by zero | |
fraction = (i - azimuth_points[prev_point][0]) / (azimuth_points[next_point][0] - azimuth_points[prev_point][0]) | |
if interpolation == "ease_in": | |
fraction = ease_in(fraction) | |
elif interpolation == "ease_out": | |
fraction = ease_out(fraction) | |
elif interpolation == "ease_in_out": | |
fraction = ease_in_out(fraction) | |
# Use the new interpolate_angle function | |
interpolated_azimuth = interpolate_angle(azimuth_points[prev_point][1], azimuth_points[next_point][1], fraction) | |
else: | |
interpolated_azimuth = azimuth_points[prev_point][1] | |
# Interpolate the elevation | |
next_elevation_point = 1 | |
while next_elevation_point < len(elevation_points) and i >= elevation_points[next_elevation_point][0]: | |
next_elevation_point += 1 | |
if next_elevation_point == len(elevation_points): | |
next_elevation_point -= 1 | |
prev_elevation_point = max(next_elevation_point - 1, 0) | |
if elevation_points[next_elevation_point][0] != elevation_points[prev_elevation_point][0]: | |
fraction = (i - elevation_points[prev_elevation_point][0]) / (elevation_points[next_elevation_point][0] - elevation_points[prev_elevation_point][0]) | |
if interpolation == "ease_in": | |
fraction = ease_in(fraction) | |
elif interpolation == "ease_out": | |
fraction = ease_out(fraction) | |
elif interpolation == "ease_in_out": | |
fraction = ease_in_out(fraction) | |
interpolated_elevation = interpolate_angle(elevation_points[prev_elevation_point][1], elevation_points[next_elevation_point][1], fraction) | |
else: | |
interpolated_elevation = elevation_points[prev_elevation_point][1] | |
cam_embeds = camera_embeddings(interpolated_elevation, interpolated_azimuth) | |
cond = torch.cat([pooled, cam_embeds.repeat((pooled.shape[0], 1, 1))], dim=-1) | |
positive_pooled_out.append(t) | |
positive_cond_out.append(cond) | |
negative_pooled_out.append(torch.zeros_like(t)) | |
negative_cond_out.append(torch.zeros_like(pooled)) | |
# Concatenate the conditions and pooled outputs | |
final_positive_cond = torch.cat(positive_cond_out, dim=0) | |
final_positive_pooled = torch.cat(positive_pooled_out, dim=0) | |
final_negative_cond = torch.cat(negative_cond_out, dim=0) | |
final_negative_pooled = torch.cat(negative_pooled_out, dim=0) | |
# Structure the final output | |
final_positive = [[final_positive_cond, {"concat_latent_image": final_positive_pooled}]] | |
final_negative = [[final_negative_cond, {"concat_latent_image": final_negative_pooled}]] | |
latent = torch.zeros([batch_size, 4, height // 8, width // 8]) | |
return (final_positive, final_negative, {"samples": latent}) | |
def linear_interpolate(start, end, fraction): | |
return start + (end - start) * fraction | |
class SV3D_BatchSchedule: | |
def INPUT_TYPES(s): | |
return {"required": { "clip_vision": ("CLIP_VISION",), | |
"init_image": ("IMAGE",), | |
"vae": ("VAE",), | |
"width": ("INT", {"default": 576, "min": 16, "max": MAX_RESOLUTION, "step": 8}), | |
"height": ("INT", {"default": 576, "min": 16, "max": MAX_RESOLUTION, "step": 8}), | |
"batch_size": ("INT", {"default": 21, "min": 1, "max": 4096}), | |
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out"],), | |
"azimuth_points_string": ("STRING", {"default": "0:(0.0),\n9:(180.0),\n20:(360.0)\n", "multiline": True}), | |
"elevation_points_string": ("STRING", {"default": "0:(0.0),\n9:(0.0),\n20:(0.0)\n", "multiline": True}), | |
}} | |
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") | |
RETURN_NAMES = ("positive", "negative", "latent") | |
FUNCTION = "encode" | |
CATEGORY = "KJNodes/experimental" | |
DESCRIPTION = """ | |
Allow scheduling of the azimuth and elevation conditions for SV3D. | |
Note that SV3D is still a video model and the schedule needs to always go forward | |
https://huggingface.co/stabilityai/sv3d | |
""" | |
def encode(self, clip_vision, init_image, vae, width, height, batch_size, azimuth_points_string, elevation_points_string, interpolation): | |
output = clip_vision.encode_image(init_image) | |
pooled = output.image_embeds.unsqueeze(0) | |
pixels = common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1) | |
encode_pixels = pixels[:,:,:,:3] | |
t = vae.encode(encode_pixels) | |
def ease_in(t): | |
return t * t | |
def ease_out(t): | |
return 1 - (1 - t) * (1 - t) | |
def ease_in_out(t): | |
return 3 * t * t - 2 * t * t * t | |
# Parse the azimuth input string into a list of tuples | |
azimuth_points = [] | |
azimuth_points_string = azimuth_points_string.rstrip(',\n') | |
for point_str in azimuth_points_string.split(','): | |
frame_str, azimuth_str = point_str.split(':') | |
frame = int(frame_str.strip()) | |
azimuth = float(azimuth_str.strip()[1:-1]) | |
azimuth_points.append((frame, azimuth)) | |
# Sort the points by frame number | |
azimuth_points.sort(key=lambda x: x[0]) | |
# Parse the elevation input string into a list of tuples | |
elevation_points = [] | |
elevation_points_string = elevation_points_string.rstrip(',\n') | |
for point_str in elevation_points_string.split(','): | |
frame_str, elevation_str = point_str.split(':') | |
frame = int(frame_str.strip()) | |
elevation_val = float(elevation_str.strip()[1:-1]) | |
elevation_points.append((frame, elevation_val)) | |
# Sort the points by frame number | |
elevation_points.sort(key=lambda x: x[0]) | |
# Index of the next point to interpolate towards | |
next_point = 1 | |
next_elevation_point = 1 | |
elevations = [] | |
azimuths = [] | |
# For azimuth interpolation | |
for i in range(batch_size): | |
# Find the interpolated azimuth for the current frame | |
while next_point < len(azimuth_points) and i >= azimuth_points[next_point][0]: | |
next_point += 1 | |
if next_point == len(azimuth_points): | |
next_point -= 1 | |
prev_point = max(next_point - 1, 0) | |
if azimuth_points[next_point][0] != azimuth_points[prev_point][0]: | |
fraction = (i - azimuth_points[prev_point][0]) / (azimuth_points[next_point][0] - azimuth_points[prev_point][0]) | |
# Apply the ease function to the fraction | |
if interpolation == "ease_in": | |
fraction = ease_in(fraction) | |
elif interpolation == "ease_out": | |
fraction = ease_out(fraction) | |
elif interpolation == "ease_in_out": | |
fraction = ease_in_out(fraction) | |
interpolated_azimuth = linear_interpolate(azimuth_points[prev_point][1], azimuth_points[next_point][1], fraction) | |
else: | |
interpolated_azimuth = azimuth_points[prev_point][1] | |
# Interpolate the elevation | |
next_elevation_point = 1 | |
while next_elevation_point < len(elevation_points) and i >= elevation_points[next_elevation_point][0]: | |
next_elevation_point += 1 | |
if next_elevation_point == len(elevation_points): | |
next_elevation_point -= 1 | |
prev_elevation_point = max(next_elevation_point - 1, 0) | |
if elevation_points[next_elevation_point][0] != elevation_points[prev_elevation_point][0]: | |
fraction = (i - elevation_points[prev_elevation_point][0]) / (elevation_points[next_elevation_point][0] - elevation_points[prev_elevation_point][0]) | |
# Apply the ease function to the fraction | |
if interpolation == "ease_in": | |
fraction = ease_in(fraction) | |
elif interpolation == "ease_out": | |
fraction = ease_out(fraction) | |
elif interpolation == "ease_in_out": | |
fraction = ease_in_out(fraction) | |
interpolated_elevation = linear_interpolate(elevation_points[prev_elevation_point][1], elevation_points[next_elevation_point][1], fraction) | |
else: | |
interpolated_elevation = elevation_points[prev_elevation_point][1] | |
azimuths.append(interpolated_azimuth) | |
elevations.append(interpolated_elevation) | |
#print("azimuths", azimuths) | |
#print("elevations", elevations) | |
# Structure the final output | |
final_positive = [[pooled, {"concat_latent_image": t, "elevation": elevations, "azimuth": azimuths}]] | |
final_negative = [[torch.zeros_like(pooled), {"concat_latent_image": torch.zeros_like(t),"elevation": elevations, "azimuth": azimuths}]] | |
latent = torch.zeros([batch_size, 4, height // 8, width // 8]) | |
return (final_positive, final_negative, {"samples": latent}) | |
class LoadResAdapterNormalization: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"model": ("MODEL",), | |
"resadapter_path": (folder_paths.get_filename_list("checkpoints"), ) | |
} | |
} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "load_res_adapter" | |
CATEGORY = "KJNodes/experimental" | |
def load_res_adapter(self, model, resadapter_path): | |
print("ResAdapter: Checking ResAdapter path") | |
resadapter_full_path = folder_paths.get_full_path("checkpoints", resadapter_path) | |
if not os.path.exists(resadapter_full_path): | |
raise Exception("Invalid model path") | |
else: | |
print("ResAdapter: Loading ResAdapter normalization weights") | |
from comfy.utils import load_torch_file | |
prefix_to_remove = 'diffusion_model.' | |
model_clone = model.clone() | |
norm_state_dict = load_torch_file(resadapter_full_path) | |
new_values = {key[len(prefix_to_remove):]: value for key, value in norm_state_dict.items() if key.startswith(prefix_to_remove)} | |
print("ResAdapter: Attempting to add patches with ResAdapter weights") | |
try: | |
for key in model.model.diffusion_model.state_dict().keys(): | |
if key in new_values: | |
original_tensor = model.model.diffusion_model.state_dict()[key] | |
new_tensor = new_values[key].to(model.model.diffusion_model.dtype) | |
if original_tensor.shape == new_tensor.shape: | |
model_clone.add_object_patch(f"diffusion_model.{key}.data", new_tensor) | |
else: | |
print("ResAdapter: No match for key: ",key) | |
except: | |
raise Exception("Could not patch model, this way of patching was added to ComfyUI on March 3rd 2024, is your ComfyUI up to date?") | |
print("ResAdapter: Added resnet normalization patches") | |
return (model_clone, ) | |
class Superprompt: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"instruction_prompt": ("STRING", {"default": 'Expand the following prompt to add more detail', "multiline": True}), | |
"prompt": ("STRING", {"default": '', "multiline": True, "forceInput": True}), | |
"max_new_tokens": ("INT", {"default": 128, "min": 1, "max": 4096, "step": 1}), | |
} | |
} | |
RETURN_TYPES = ("STRING",) | |
FUNCTION = "process" | |
CATEGORY = "KJNodes/text" | |
DESCRIPTION = """ | |
# SuperPrompt | |
A T5 model fine-tuned on the SuperPrompt dataset for | |
upsampling text prompts to more detailed descriptions. | |
Meant to be used as a pre-generation step for text-to-image | |
models that benefit from more detailed prompts. | |
https://huggingface.co/roborovski/superprompt-v1 | |
""" | |
def process(self, instruction_prompt, prompt, max_new_tokens): | |
device = model_management.get_torch_device() | |
from transformers import T5Tokenizer, T5ForConditionalGeneration | |
checkpoint_path = os.path.join(script_directory, "models","superprompt-v1") | |
if not os.path.exists(checkpoint_path): | |
print(f"Downloading model to: {checkpoint_path}") | |
from huggingface_hub import snapshot_download | |
snapshot_download(repo_id="roborovski/superprompt-v1", | |
local_dir=checkpoint_path, | |
local_dir_use_symlinks=False) | |
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small", legacy=False) | |
model = T5ForConditionalGeneration.from_pretrained(checkpoint_path, device_map=device) | |
model.to(device) | |
input_text = instruction_prompt + ": " + prompt | |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device) | |
outputs = model.generate(input_ids, max_new_tokens=max_new_tokens) | |
out = (tokenizer.decode(outputs[0])) | |
out = out.replace('<pad>', '') | |
out = out.replace('</s>', '') | |
return (out, ) | |
class CameraPoseVisualizer: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"pose_file_path": ("STRING", {"default": '', "multiline": False}), | |
"base_xval": ("FLOAT", {"default": 0.2,"min": 0, "max": 100, "step": 0.01}), | |
"zval": ("FLOAT", {"default": 0.3,"min": 0, "max": 100, "step": 0.01}), | |
"scale": ("FLOAT", {"default": 1.0,"min": 0.01, "max": 10.0, "step": 0.01}), | |
"use_exact_fx": ("BOOLEAN", {"default": False}), | |
"relative_c2w": ("BOOLEAN", {"default": True}), | |
"use_viewer": ("BOOLEAN", {"default": False}), | |
}, | |
"optional": { | |
"cameractrl_poses": ("CAMERACTRL_POSES", {"default": None}), | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "plot" | |
CATEGORY = "KJNodes/misc" | |
DESCRIPTION = """ | |
Visualizes the camera poses, from Animatediff-Evolved CameraCtrl Pose | |
or a .txt file with RealEstate camera intrinsics and coordinates, in a 3D plot. | |
""" | |
def plot(self, pose_file_path, scale, base_xval, zval, use_exact_fx, relative_c2w, use_viewer, cameractrl_poses=None): | |
import matplotlib as mpl | |
import matplotlib.pyplot as plt | |
from torchvision.transforms import ToTensor | |
x_min = -2.0 * scale | |
x_max = 2.0 * scale | |
y_min = -2.0 * scale | |
y_max = 2.0 * scale | |
z_min = -2.0 * scale | |
z_max = 2.0 * scale | |
plt.rcParams['text.color'] = '#999999' | |
self.fig = plt.figure(figsize=(18, 7)) | |
self.fig.patch.set_facecolor('#353535') | |
self.ax = self.fig.add_subplot(projection='3d') | |
self.ax.set_facecolor('#353535') # Set the background color here | |
self.ax.grid(color='#999999', linestyle='-', linewidth=0.5) | |
self.plotly_data = None # plotly data traces | |
self.ax.set_aspect("auto") | |
self.ax.set_xlim(x_min, x_max) | |
self.ax.set_ylim(y_min, y_max) | |
self.ax.set_zlim(z_min, z_max) | |
self.ax.set_xlabel('x', color='#999999') | |
self.ax.set_ylabel('y', color='#999999') | |
self.ax.set_zlabel('z', color='#999999') | |
for text in self.ax.get_xticklabels() + self.ax.get_yticklabels() + self.ax.get_zticklabels(): | |
text.set_color('#999999') | |
print('initialize camera pose visualizer') | |
if pose_file_path != "": | |
with open(pose_file_path, 'r') as f: | |
poses = f.readlines() | |
w2cs = [np.asarray([float(p) for p in pose.strip().split(' ')[7:]]).reshape(3, 4) for pose in poses[1:]] | |
fxs = [float(pose.strip().split(' ')[1]) for pose in poses[1:]] | |
#print(poses) | |
elif cameractrl_poses is not None: | |
poses = cameractrl_poses | |
w2cs = [np.array(pose[7:]).reshape(3, 4) for pose in cameractrl_poses] | |
fxs = [pose[1] for pose in cameractrl_poses] | |
else: | |
raise ValueError("Please provide either pose_file_path or cameractrl_poses") | |
total_frames = len(w2cs) | |
transform_matrix = np.asarray([[1, 0, 0, 0], [0, 0, 1, 0], [0, -1, 0, 0], [0, 0, 0, 1]]).reshape(4, 4) | |
last_row = np.zeros((1, 4)) | |
last_row[0, -1] = 1.0 | |
w2cs = [np.concatenate((w2c, last_row), axis=0) for w2c in w2cs] | |
c2ws = self.get_c2w(w2cs, transform_matrix, relative_c2w) | |
for frame_idx, c2w in enumerate(c2ws): | |
self.extrinsic2pyramid(c2w, frame_idx / total_frames, hw_ratio=1/1, base_xval=base_xval, | |
zval=(fxs[frame_idx] if use_exact_fx else zval)) | |
# Create the colorbar | |
cmap = mpl.cm.rainbow | |
norm = mpl.colors.Normalize(vmin=0, vmax=total_frames) | |
colorbar = self.fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap), ax=self.ax, orientation='vertical') | |
# Change the colorbar label | |
colorbar.set_label('Frame', color='#999999') # Change the label and its color | |
# Change the tick colors | |
colorbar.ax.yaxis.set_tick_params(colors='#999999') # Change the tick color | |
# Change the tick frequency | |
# Assuming you want to set the ticks at every 10th frame | |
ticks = np.arange(0, total_frames, 10) | |
colorbar.ax.yaxis.set_ticks(ticks) | |
plt.title('') | |
plt.draw() | |
buf = io.BytesIO() | |
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0) | |
buf.seek(0) | |
img = Image.open(buf) | |
tensor_img = ToTensor()(img) | |
buf.close() | |
tensor_img = tensor_img.permute(1, 2, 0).unsqueeze(0) | |
if use_viewer: | |
time.sleep(1) | |
plt.show() | |
return (tensor_img,) | |
def extrinsic2pyramid(self, extrinsic, color_map='red', hw_ratio=1/1, base_xval=1, zval=3): | |
from mpl_toolkits.mplot3d.art3d import Poly3DCollection | |
vertex_std = np.array([[0, 0, 0, 1], | |
[base_xval, -base_xval * hw_ratio, zval, 1], | |
[base_xval, base_xval * hw_ratio, zval, 1], | |
[-base_xval, base_xval * hw_ratio, zval, 1], | |
[-base_xval, -base_xval * hw_ratio, zval, 1]]) | |
vertex_transformed = vertex_std @ extrinsic.T | |
meshes = [[vertex_transformed[0, :-1], vertex_transformed[1][:-1], vertex_transformed[2, :-1]], | |
[vertex_transformed[0, :-1], vertex_transformed[2, :-1], vertex_transformed[3, :-1]], | |
[vertex_transformed[0, :-1], vertex_transformed[3, :-1], vertex_transformed[4, :-1]], | |
[vertex_transformed[0, :-1], vertex_transformed[4, :-1], vertex_transformed[1, :-1]], | |
[vertex_transformed[1, :-1], vertex_transformed[2, :-1], vertex_transformed[3, :-1], vertex_transformed[4, :-1]]] | |
color = color_map if isinstance(color_map, str) else plt.cm.rainbow(color_map) | |
self.ax.add_collection3d( | |
Poly3DCollection(meshes, facecolors=color, linewidths=0.3, edgecolors=color, alpha=0.25)) | |
def customize_legend(self, list_label): | |
from matplotlib.patches import Patch | |
import matplotlib.pyplot as plt | |
list_handle = [] | |
for idx, label in enumerate(list_label): | |
color = plt.cm.rainbow(idx / len(list_label)) | |
patch = Patch(color=color, label=label) | |
list_handle.append(patch) | |
plt.legend(loc='right', bbox_to_anchor=(1.8, 0.5), handles=list_handle) | |
def get_c2w(self, w2cs, transform_matrix, relative_c2w): | |
if relative_c2w: | |
target_cam_c2w = np.array([ | |
[1, 0, 0, 0], | |
[0, 1, 0, 0], | |
[0, 0, 1, 0], | |
[0, 0, 0, 1] | |
]) | |
abs2rel = target_cam_c2w @ w2cs[0] | |
ret_poses = [target_cam_c2w, ] + [abs2rel @ np.linalg.inv(w2c) for w2c in w2cs[1:]] | |
else: | |
ret_poses = [np.linalg.inv(w2c) for w2c in w2cs] | |
ret_poses = [transform_matrix @ x for x in ret_poses] | |
return np.array(ret_poses, dtype=np.float32) | |
class StabilityAPI_SD3: | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"prompt": ("STRING", {"multiline": True}), | |
"n_prompt": ("STRING", {"multiline": True}), | |
"seed": ("INT", {"default": 123,"min": 0, "max": 4294967294, "step": 1}), | |
"model": ( | |
[ | |
'sd3', | |
'sd3-turbo', | |
], | |
{ | |
"default": 'sd3' | |
}), | |
"aspect_ratio": ( | |
[ | |
'1:1', | |
'16:9', | |
'21:9', | |
'2:3', | |
'3:2', | |
'4:5', | |
'5:4', | |
'9:16', | |
'9:21', | |
], | |
{ | |
"default": '1:1' | |
}), | |
"output_format": ( | |
[ | |
'png', | |
'jpeg', | |
], | |
{ | |
"default": 'jpeg' | |
}), | |
}, | |
"optional": { | |
"api_key": ("STRING", {"multiline": True}), | |
"image": ("IMAGE",), | |
"img2img_strength": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}), | |
"disable_metadata": ("BOOLEAN", {"default": True}), | |
}, | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "apicall" | |
CATEGORY = "KJNodes/experimental" | |
DESCRIPTION = """ | |
## Calls StabilityAI API | |
Although you may have multiple keys in your account, | |
you should use the same key for all requests to this API. | |
Get your API key here: https://platform.stability.ai/account/keys | |
Recommended to set the key in the config.json -file under this | |
node packs folder. | |
# WARNING: | |
Otherwise the API key may get saved in the image metadata even | |
with "disable_metadata" on if the workflow includes save nodes | |
separate from this node. | |
sd3 requires 6.5 credits per generation | |
sd3-turbo requires 4 credits per generation | |
If no image is provided, mode is set to text-to-image | |
""" | |
def apicall(self, prompt, n_prompt, model, seed, aspect_ratio, output_format, | |
img2img_strength=0.5, image=None, disable_metadata=True, api_key=""): | |
from comfy.cli_args import args | |
if disable_metadata: | |
args.disable_metadata = True | |
else: | |
args.disable_metadata = False | |
import requests | |
from torchvision import transforms | |
data = { | |
"mode": "text-to-image", | |
"prompt": prompt, | |
"model": model, | |
"seed": seed, | |
"output_format": output_format | |
} | |
if image is not None: | |
image = image.permute(0, 3, 1, 2).squeeze(0) | |
to_pil = transforms.ToPILImage() | |
pil_image = to_pil(image) | |
# Save the PIL Image to a BytesIO object | |
buffer = io.BytesIO() | |
pil_image.save(buffer, format='PNG') | |
buffer.seek(0) | |
files = {"image": ("image.png", buffer, "image/png")} | |
data["mode"] = "image-to-image" | |
data["image"] = pil_image | |
data["strength"] = img2img_strength | |
else: | |
data["aspect_ratio"] = aspect_ratio, | |
files = {"none": ''} | |
if model != "sd3-turbo": | |
data["negative_prompt"] = n_prompt | |
headers={ | |
"accept": "image/*" | |
} | |
if api_key != "": | |
headers["authorization"] = api_key | |
else: | |
config_file_path = os.path.join(script_directory,"config.json") | |
with open(config_file_path, 'r') as file: | |
config = json.load(file) | |
api_key_from_config = config.get("sai_api_key") | |
headers["authorization"] = api_key_from_config | |
response = requests.post( | |
f"https://api.stability.ai/v2beta/stable-image/generate/sd3", | |
headers=headers, | |
files = files, | |
data = data, | |
) | |
if response.status_code == 200: | |
# Convert the response content to a PIL Image | |
image = Image.open(io.BytesIO(response.content)) | |
# Convert the PIL Image to a PyTorch tensor | |
transform = transforms.ToTensor() | |
tensor_image = transform(image) | |
tensor_image = tensor_image.unsqueeze(0) | |
tensor_image = tensor_image.permute(0, 2, 3, 1).cpu().float() | |
return (tensor_image,) | |
else: | |
try: | |
# Attempt to parse the response as JSON | |
error_data = response.json() | |
raise Exception(f"Server error: {error_data}") | |
except json.JSONDecodeError: | |
# If the response is not valid JSON, raise a different exception | |
raise Exception(f"Server error: {response.text}") | |
class CheckpointPerturbWeights: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"model": ("MODEL",), | |
"joint_blocks": ("FLOAT", {"default": 0.02, "min": 0.001, "max": 10.0, "step": 0.001}), | |
"final_layer": ("FLOAT", {"default": 0.02, "min": 0.001, "max": 10.0, "step": 0.001}), | |
"rest_of_the_blocks": ("FLOAT", {"default": 0.02, "min": 0.001, "max": 10.0, "step": 0.001}), | |
"seed": ("INT", {"default": 123,"min": 0, "max": 0xffffffffffffffff, "step": 1}), | |
} | |
} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "mod" | |
OUTPUT_NODE = True | |
CATEGORY = "KJNodes/experimental" | |
def mod(self, seed, model, joint_blocks, final_layer, rest_of_the_blocks): | |
import copy | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
device = model_management.get_torch_device() | |
model_copy = copy.deepcopy(model) | |
model_copy.model.to(device) | |
keys = model_copy.model.diffusion_model.state_dict().keys() | |
dict = {} | |
for key in keys: | |
dict[key] = model_copy.model.diffusion_model.state_dict()[key] | |
pbar = ProgressBar(len(keys)) | |
for k in keys: | |
v = dict[k] | |
print(f'{k}: {v.std()}') | |
if k.startswith('joint_blocks'): | |
multiplier = joint_blocks | |
elif k.startswith('final_layer'): | |
multiplier = final_layer | |
else: | |
multiplier = rest_of_the_blocks | |
dict[k] += torch.normal(torch.zeros_like(v) * v.mean(), torch.ones_like(v) * v.std() * multiplier).to(device) | |
pbar.update(1) | |
model_copy.model.diffusion_model.load_state_dict(dict) | |
return model_copy, | |
class DifferentialDiffusionAdvanced(): | |
def INPUT_TYPES(s): | |
return {"required": { | |
"model": ("MODEL", ), | |
"samples": ("LATENT",), | |
"mask": ("MASK",), | |
"multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.001}), | |
}} | |
RETURN_TYPES = ("MODEL", "LATENT") | |
FUNCTION = "apply" | |
CATEGORY = "_for_testing" | |
INIT = False | |
def apply(self, model, samples, mask, multiplier): | |
self.multiplier = multiplier | |
model = model.clone() | |
model.set_model_denoise_mask_function(self.forward) | |
s = samples.copy() | |
s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])) | |
return (model, s) | |
def forward(self, sigma: torch.Tensor, denoise_mask: torch.Tensor, extra_options: dict): | |
model = extra_options["model"] | |
step_sigmas = extra_options["sigmas"] | |
sigma_to = model.inner_model.model_sampling.sigma_min | |
if step_sigmas[-1] > sigma_to: | |
sigma_to = step_sigmas[-1] | |
sigma_from = step_sigmas[0] | |
ts_from = model.inner_model.model_sampling.timestep(sigma_from) | |
ts_to = model.inner_model.model_sampling.timestep(sigma_to) | |
current_ts = model.inner_model.model_sampling.timestep(sigma[0]) | |
threshold = (current_ts - ts_to) / (ts_from - ts_to) / self.multiplier | |
return (denoise_mask >= threshold).to(denoise_mask.dtype) | |
class FluxBlockLoraSelect: | |
def __init__(self): | |
self.loaded_lora = None | |
def INPUT_TYPES(s): | |
arg_dict = {} | |
argument = ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1000.0, "step": 0.01}) | |
for i in range(19): | |
arg_dict["double_blocks.{}.".format(i)] = argument | |
for i in range(38): | |
arg_dict["single_blocks.{}.".format(i)] = argument | |
return {"required": arg_dict} | |
RETURN_TYPES = ("SELECTEDBLOCKS", ) | |
RETURN_NAMES = ("blocks", ) | |
OUTPUT_TOOLTIPS = ("The modified diffusion model.",) | |
FUNCTION = "load_lora" | |
CATEGORY = "KJNodes/experimental" | |
DESCRIPTION = "Select individual block alpha values, value of 0 removes the block altogether" | |
def load_lora(self, **kwargs): | |
return (kwargs,) | |
class FluxBlockLoraLoader: | |
def __init__(self): | |
self.loaded_lora = None | |
def INPUT_TYPES(s): | |
return {"required": { | |
"model": ("MODEL", {"tooltip": "The diffusion model the LoRA will be applied to."}), | |
"strength_model": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01, "tooltip": "How strongly to modify the diffusion model. This value can be negative."}), | |
}, | |
"optional": { | |
"lora_name": (folder_paths.get_filename_list("loras"), {"tooltip": "The name of the LoRA."}), | |
"opt_lora_path": ("STRING", {"forceInput": True, "tooltip": "Absolute path of the LoRA."}), | |
"blocks": ("SELECTEDBLOCKS",), | |
} | |
} | |
RETURN_TYPES = ("MODEL", "STRING", ) | |
RETURN_NAMES = ("model", "rank", ) | |
OUTPUT_TOOLTIPS = ("The modified diffusion model.", "possible rank of the LoRA.") | |
FUNCTION = "load_lora" | |
CATEGORY = "KJNodes/experimental" | |
def load_lora(self, model, strength_model, lora_name=None, opt_lora_path=None, blocks=None): | |
from comfy.utils import load_torch_file | |
import comfy.lora | |
if opt_lora_path: | |
lora_path = opt_lora_path | |
else: | |
lora_path = folder_paths.get_full_path("loras", lora_name) | |
lora = None | |
if self.loaded_lora is not None: | |
if self.loaded_lora[0] == lora_path: | |
lora = self.loaded_lora[1] | |
else: | |
temp = self.loaded_lora | |
self.loaded_lora = None | |
del temp | |
if lora is None: | |
lora = load_torch_file(lora_path, safe_load=True) | |
# Find the first key that ends with "weight" | |
rank = "unknown" | |
weight_key = next((key for key in lora.keys() if key.endswith('weight')), None) | |
# Print the shape of the value corresponding to the key | |
if weight_key: | |
print(f"Shape of the first 'weight' key ({weight_key}): {lora[weight_key].shape}") | |
rank = str(lora[weight_key].shape[0]) | |
else: | |
print("No key ending with 'weight' found.") | |
rank = "Couldn't find rank" | |
self.loaded_lora = (lora_path, lora) | |
key_map = {} | |
if model is not None: | |
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map) | |
loaded = comfy.lora.load_lora(lora, key_map) | |
if blocks is not None: | |
keys_to_delete = [] | |
for block in blocks: | |
for key in list(loaded.keys()): | |
match = False | |
if isinstance(key, str) and block in key: | |
match = True | |
elif isinstance(key, tuple): | |
for k in key: | |
if block in k: | |
match = True | |
break | |
if match: | |
ratio = blocks[block] | |
if ratio == 0: | |
keys_to_delete.append(key) | |
else: | |
value = loaded[key] | |
if isinstance(value, tuple) and len(value) > 1 and isinstance(value[1], tuple): | |
inner_tuple = value[1] | |
if len(inner_tuple) >= 3: | |
inner_tuple = (inner_tuple[0], inner_tuple[1], ratio, *inner_tuple[3:]) | |
loaded[key] = (value[0], inner_tuple) | |
else: | |
loaded[key] = (value[0], ratio) | |
for key in keys_to_delete: | |
del loaded[key] | |
print("loading lora keys:") | |
for key, value in loaded.items(): | |
if isinstance(value, tuple) and len(value) > 1 and isinstance(value[1], tuple): | |
inner_tuple = value[1] | |
alpha = inner_tuple[2] if len(inner_tuple) >= 3 else None | |
else: | |
alpha = value[1] if len(value) > 1 else None | |
print(f"Key: {key}, Alpha: {alpha}") | |
if model is not None: | |
new_modelpatcher = model.clone() | |
k = new_modelpatcher.add_patches(loaded, strength_model) | |
k = set(k) | |
for x in loaded: | |
if (x not in k): | |
print("NOT LOADED {}".format(x)) | |
return (new_modelpatcher, rank) | |
class CustomControlNetWeightsFluxFromList: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"list_of_floats": ("FLOAT", {"forceInput": True}, ), | |
}, | |
"optional": { | |
"uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ), | |
"cn_extras": ("CN_WEIGHTS_EXTRAS",), | |
"autosize": ("ACNAUTOSIZE", {"padding": 0}), | |
} | |
} | |
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",) | |
RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT") | |
FUNCTION = "load_weights" | |
DESCRIPTION = "Creates controlnet weights from a list of floats for Advanced-ControlNet" | |
CATEGORY = "KJNodes/controlnet" | |
def load_weights(self, list_of_floats: list[float], | |
uncond_multiplier: float=1.0, cn_extras: dict[str]={}): | |
acn_nodes = importlib.import_module("ComfyUI-Advanced-ControlNet") | |
ControlWeights = acn_nodes.adv_control.utils.ControlWeights | |
TimestepKeyframeGroup = acn_nodes.adv_control.utils.TimestepKeyframeGroup | |
TimestepKeyframe = acn_nodes.adv_control.utils.TimestepKeyframe | |
weights = ControlWeights.controlnet(weights_input=list_of_floats, uncond_multiplier=uncond_multiplier, extras=cn_extras) | |
print(weights.weights_input) | |
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights))) | |
SHAKKERLABS_UNION_CONTROLNET_TYPES = { | |
"canny": 0, | |
"tile": 1, | |
"depth": 2, | |
"blur": 3, | |
"pose": 4, | |
"gray": 5, | |
"low quality": 6, | |
} | |
class SetShakkerLabsUnionControlNetType: | |
def INPUT_TYPES(s): | |
return {"required": {"control_net": ("CONTROL_NET", ), | |
"type": (["auto"] + list(SHAKKERLABS_UNION_CONTROLNET_TYPES.keys()),) | |
}} | |
CATEGORY = "conditioning/controlnet" | |
RETURN_TYPES = ("CONTROL_NET",) | |
FUNCTION = "set_controlnet_type" | |
def set_controlnet_type(self, control_net, type): | |
control_net = control_net.copy() | |
type_number = SHAKKERLABS_UNION_CONTROLNET_TYPES.get(type, -1) | |
if type_number >= 0: | |
control_net.set_extra_arg("control_type", [type_number]) | |
else: | |
control_net.set_extra_arg("control_type", []) | |
return (control_net,) | |
class ModelSaveKJ: | |
def __init__(self): | |
self.output_dir = folder_paths.get_output_directory() | |
def INPUT_TYPES(s): | |
return {"required": { "model": ("MODEL",), | |
"filename_prefix": ("STRING", {"default": "diffusion_models/ComfyUI"}), | |
"model_key_prefix": ("STRING", {"default": "model.diffusion_model."}), | |
}, | |
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},} | |
RETURN_TYPES = () | |
FUNCTION = "save" | |
OUTPUT_NODE = True | |
CATEGORY = "advanced/model_merging" | |
def save(self, model, filename_prefix, model_key_prefix, prompt=None, extra_pnginfo=None): | |
from comfy.utils import save_torch_file | |
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) | |
output_checkpoint = f"{filename}_{counter:05}_.safetensors" | |
output_checkpoint = os.path.join(full_output_folder, output_checkpoint) | |
load_models = [model] | |
model_management.load_models_gpu(load_models, force_patch_weights=True) | |
default_prefix = "model.diffusion_model." | |
sd = model.model.state_dict_for_saving(None, None, None) | |
new_sd = {} | |
for k in sd: | |
if k.startswith(default_prefix): | |
new_key = model_key_prefix + k[len(default_prefix):] | |
else: | |
new_key = k # In case the key doesn't start with the default prefix, keep it unchanged | |
t = sd[k] | |
if not t.is_contiguous(): | |
t = t.contiguous() | |
new_sd[new_key] = t | |
print(full_output_folder) | |
if not os.path.exists(full_output_folder): | |
os.makedirs(full_output_folder) | |
save_torch_file(new_sd, os.path.join(full_output_folder, output_checkpoint)) | |
return {} | |
from comfy.ldm.modules import attention as comfy_attention | |
orig_attention = comfy_attention.optimized_attention | |
class BaseLoaderKJ: | |
original_linear = None | |
cublas_patched = False | |
def _patch_modules(self, patch_cublaslinear, sage_attention): | |
from comfy.ops import disable_weight_init, CastWeightBiasOp, cast_bias_weight | |
import torch | |
global orig_attention | |
if 'orig_attention' not in globals(): | |
orig_attention = comfy_attention.optimized_attention | |
if sage_attention: | |
from sageattention import sageattn | |
def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False): | |
if skip_reshape: | |
b, _, _, dim_head = q.shape | |
else: | |
b, _, dim_head = q.shape | |
dim_head //= heads | |
if dim_head not in (64, 96, 128) or not (k.shape == q.shape and v.shape == q.shape): | |
return orig_attention(q, k, v, heads, mask, attn_precision, skip_reshape) | |
if not skip_reshape: | |
q, k, v = map( | |
lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2), | |
(q, k, v), | |
) | |
return ( | |
sageattn(q, k, v, is_causal=False, attn_mask=mask, dropout_p=0.0, smooth_k=True) | |
.transpose(1, 2) | |
.reshape(b, -1, heads * dim_head) | |
) | |
comfy_attention.optimized_attention = attention_sage | |
else: | |
comfy_attention.optimized_attention = orig_attention | |
if patch_cublaslinear: | |
if not BaseLoaderKJ.cublas_patched: | |
BaseLoaderKJ.original_linear = disable_weight_init.Linear | |
try: | |
from cublas_ops import CublasLinear | |
except ImportError: | |
raise Exception("Can't import 'torch-cublas-hgemm', install it from here https://github.com/aredden/torch-cublas-hgemm") | |
class PatchedLinear(CublasLinear, CastWeightBiasOp): | |
def reset_parameters(self): | |
pass | |
def forward_comfy_cast_weights(self, input): | |
weight, bias = cast_bias_weight(self, input) | |
return torch.nn.functional.linear(input, weight, bias) | |
def forward(self, *args, **kwargs): | |
if self.comfy_cast_weights: | |
return self.forward_comfy_cast_weights(*args, **kwargs) | |
else: | |
return super().forward(*args, **kwargs) | |
disable_weight_init.Linear = PatchedLinear | |
BaseLoaderKJ.cublas_patched = True | |
else: | |
if BaseLoaderKJ.cublas_patched: | |
disable_weight_init.Linear = BaseLoaderKJ.original_linear | |
BaseLoaderKJ.cublas_patched = False | |
class CheckpointLoaderKJ(BaseLoaderKJ): | |
def INPUT_TYPES(s): | |
return {"required": { | |
"ckpt_name": (folder_paths.get_filename_list("checkpoints"), {"tooltip": "The name of the checkpoint (model) to load."}), | |
"patch_cublaslinear": ("BOOLEAN", {"default": True, "tooltip": "Enable or disable the patching, won't take effect on already loaded models!"}), | |
"sage_attention": ("BOOLEAN", {"default": False, "tooltip": "Patch comfy attention to use sageattn."}), | |
}} | |
RETURN_TYPES = ("MODEL", "CLIP", "VAE") | |
FUNCTION = "patch" | |
OUTPUT_NODE = True | |
DESCRIPTION = "Experimental node for patching torch.nn.Linear with CublasLinear." | |
EXPERIMENTAL = True | |
CATEGORY = "KJNodes/experimental" | |
def patch(self, ckpt_name, patch_cublaslinear, sage_attention): | |
self._patch_modules(patch_cublaslinear, sage_attention) | |
from nodes import CheckpointLoaderSimple | |
model, clip, vae = CheckpointLoaderSimple.load_checkpoint(self, ckpt_name) | |
return model, clip, vae | |
class DiffusionModelLoaderKJ(BaseLoaderKJ): | |
def INPUT_TYPES(s): | |
return {"required": { | |
"ckpt_name": (folder_paths.get_filename_list("diffusion_models"), {"tooltip": "The name of the checkpoint (model) to load."}), | |
"weight_dtype": (["default", "fp8_e4m3fn", "fp8_e4m3fn_fast", "fp8_e5m2"],), | |
"patch_cublaslinear": ("BOOLEAN", {"default": True, "tooltip": "Enable or disable the patching, won't take effect on already loaded models!"}), | |
"sage_attention": ("BOOLEAN", {"default": False, "tooltip": "Patch comfy attention to use sageattn."}), | |
}} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "patch_and_load" | |
OUTPUT_NODE = True | |
DESCRIPTION = "Node for patching torch.nn.Linear with CublasLinear." | |
EXPERIMENTAL = True | |
CATEGORY = "KJNodes/experimental" | |
def patch_and_load(self, ckpt_name, weight_dtype, patch_cublaslinear, sage_attention): | |
self._patch_modules(patch_cublaslinear, sage_attention) | |
from nodes import UNETLoader | |
model, = UNETLoader.load_unet(self, ckpt_name, weight_dtype) | |
return (model,) | |
import comfy.model_patcher | |
import comfy.utils | |
import comfy.sd | |
original_patch_model = comfy.model_patcher.ModelPatcher.patch_model | |
original_load_lora_for_models = comfy.sd.load_lora_for_models | |
def patched_patch_model(self, device_to=None, lowvram_model_memory=0, load_weights=True, force_patch_weights=False): | |
if lowvram_model_memory == 0: | |
full_load = True | |
else: | |
full_load = False | |
if load_weights: | |
self.load(device_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights, full_load=full_load) | |
for k in self.object_patches: | |
old = comfy.utils.set_attr(self.model, k, self.object_patches[k]) | |
if k not in self.object_patches_backup: | |
self.object_patches_backup[k] = old | |
return self.model | |
def patched_load_lora_for_models(model, clip, lora, strength_model, strength_clip): | |
patch_keys = list(model.object_patches_backup.keys()) | |
for k in patch_keys: | |
#print("backing up object patch: ", k) | |
comfy.utils.set_attr(model.model, k, model.object_patches_backup[k]) | |
key_map = {} | |
if model is not None: | |
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map) | |
if clip is not None: | |
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map) | |
loaded = comfy.lora.load_lora(lora, key_map) | |
#print(temp_object_patches_backup) | |
if model is not None: | |
new_modelpatcher = model.clone() | |
k = new_modelpatcher.add_patches(loaded, strength_model) | |
else: | |
k = () | |
new_modelpatcher = None | |
if clip is not None: | |
new_clip = clip.clone() | |
k1 = new_clip.add_patches(loaded, strength_clip) | |
else: | |
k1 = () | |
new_clip = None | |
k = set(k) | |
k1 = set(k1) | |
for x in loaded: | |
if (x not in k) and (x not in k1): | |
print("NOT LOADED {}".format(x)) | |
if patch_keys: | |
if hasattr(model.model, "compile_settings"): | |
compile_settings = getattr(model.model, "compile_settings") | |
print("compile_settings: ", compile_settings) | |
for k in patch_keys: | |
if "diffusion_model." in k: | |
# Remove the prefix to get the attribute path | |
key = k.replace('diffusion_model.', '') | |
attributes = key.split('.') | |
# Start with the diffusion_model object | |
block = model.get_model_object("diffusion_model") | |
# Navigate through the attributes to get to the block | |
for attr in attributes: | |
if attr.isdigit(): | |
block = block[int(attr)] | |
else: | |
block = getattr(block, attr) | |
# Compile the block | |
compiled_block = torch.compile(block, mode=compile_settings["mode"], dynamic=compile_settings["dynamic"], fullgraph=compile_settings["fullgraph"], backend=compile_settings["backend"]) | |
# Add the compiled block back as an object patch | |
model.add_object_patch(k, compiled_block) | |
return (new_modelpatcher, new_clip) | |
class PatchModelPatcherOrder: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"model": ("MODEL",), | |
"patch_order": (["object_patch_first", "weight_patch_first"], {"default": "weight_patch_first", "tooltip": "Patch the comfy patch_model function to load weight patches (LoRAs) before compiling the model"}), | |
}} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "patch" | |
CATEGORY = "KJNodes/experimental" | |
DESCTIPTION = "Patch the comfy patch_model function patching order, useful for torch.compile (used as object_patch) as it should come last if you want to use LoRAs with compile" | |
EXPERIMENTAL = True | |
def patch(self, model, patch_order): | |
comfy.model_patcher.ModelPatcher.temp_object_patches_backup = {} | |
if patch_order == "weight_patch_first": | |
comfy.model_patcher.ModelPatcher.patch_model = patched_patch_model | |
comfy.sd.load_lora_for_models = patched_load_lora_for_models | |
else: | |
comfy.model_patcher.ModelPatcher.patch_model = original_patch_model | |
comfy.sd.load_lora_for_models = original_load_lora_for_models | |
return model, | |
class TorchCompileModelFluxAdvanced: | |
def __init__(self): | |
self._compiled = False | |
def INPUT_TYPES(s): | |
return {"required": { | |
"model": ("MODEL",), | |
"backend": (["inductor", "cudagraphs"],), | |
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}), | |
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}), | |
"double_blocks": ("STRING", {"default": "0-18", "multiline": True}), | |
"single_blocks": ("STRING", {"default": "0-37", "multiline": True}), | |
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}), | |
}} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "patch" | |
CATEGORY = "KJNodes/experimental" | |
EXPERIMENTAL = True | |
def parse_blocks(self, blocks_str): | |
blocks = [] | |
for part in blocks_str.split(','): | |
part = part.strip() | |
if '-' in part: | |
start, end = map(int, part.split('-')) | |
blocks.extend(range(start, end + 1)) | |
else: | |
blocks.append(int(part)) | |
return blocks | |
def patch(self, model, backend, mode, fullgraph, single_blocks, double_blocks, dynamic): | |
single_block_list = self.parse_blocks(single_blocks) | |
double_block_list = self.parse_blocks(double_blocks) | |
m = model.clone() | |
diffusion_model = m.get_model_object("diffusion_model") | |
if not self._compiled: | |
try: | |
for i, block in enumerate(diffusion_model.double_blocks): | |
if i in double_block_list: | |
#print("Compiling double_block", i) | |
m.add_object_patch(f"diffusion_model.double_blocks.{i}", torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend)) | |
for i, block in enumerate(diffusion_model.single_blocks): | |
if i in single_block_list: | |
#print("Compiling single block", i) | |
m.add_object_patch(f"diffusion_model.single_blocks.{i}", torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend)) | |
self._compiled = True | |
compile_settings = { | |
"backend": backend, | |
"mode": mode, | |
"fullgraph": fullgraph, | |
"dynamic": dynamic, | |
} | |
setattr(m.model, "compile_settings", compile_settings) | |
except: | |
raise RuntimeError("Failed to compile model") | |
return (m, ) | |
# rest of the layers that are not patched | |
# diffusion_model.final_layer = torch.compile(diffusion_model.final_layer, mode=mode, fullgraph=fullgraph, backend=backend) | |
# diffusion_model.guidance_in = torch.compile(diffusion_model.guidance_in, mode=mode, fullgraph=fullgraph, backend=backend) | |
# diffusion_model.img_in = torch.compile(diffusion_model.img_in, mode=mode, fullgraph=fullgraph, backend=backend) | |
# diffusion_model.time_in = torch.compile(diffusion_model.time_in, mode=mode, fullgraph=fullgraph, backend=backend) | |
# diffusion_model.txt_in = torch.compile(diffusion_model.txt_in, mode=mode, fullgraph=fullgraph, backend=backend) | |
# diffusion_model.vector_in = torch.compile(diffusion_model.vector_in, mode=mode, fullgraph=fullgraph, backend=backend) | |
class TorchCompileVAE: | |
def __init__(self): | |
self._compiled_encoder = False | |
self._compiled_decoder = False | |
def INPUT_TYPES(s): | |
return {"required": { | |
"vae": ("VAE",), | |
"backend": (["inductor", "cudagraphs"],), | |
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}), | |
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}), | |
"compile_encoder": ("BOOLEAN", {"default": True, "tooltip": "Compile encoder"}), | |
"compile_decoder": ("BOOLEAN", {"default": True, "tooltip": "Compile decoder"}), | |
}} | |
RETURN_TYPES = ("VAE",) | |
FUNCTION = "compile" | |
CATEGORY = "KJNodes/experimental" | |
EXPERIMENTAL = True | |
def compile(self, vae, backend, mode, fullgraph, compile_encoder, compile_decoder): | |
if compile_encoder: | |
if not self._compiled_encoder: | |
try: | |
vae.first_stage_model.encoder = torch.compile(vae.first_stage_model.encoder, mode=mode, fullgraph=fullgraph, backend=backend) | |
self._compiled_encoder = True | |
except: | |
raise RuntimeError("Failed to compile model") | |
if compile_decoder: | |
if not self._compiled_decoder: | |
try: | |
vae.first_stage_model.decoder = torch.compile(vae.first_stage_model.decoder, mode=mode, fullgraph=fullgraph, backend=backend) | |
self._compiled_decoder = True | |
except: | |
raise RuntimeError("Failed to compile model") | |
return (vae, ) | |
class TorchCompileControlNet: | |
def __init__(self): | |
self._compiled= False | |
def INPUT_TYPES(s): | |
return {"required": { | |
"controlnet": ("CONTROL_NET",), | |
"backend": (["inductor", "cudagraphs"],), | |
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}), | |
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}), | |
}} | |
RETURN_TYPES = ("CONTROL_NET",) | |
FUNCTION = "compile" | |
CATEGORY = "KJNodes/experimental" | |
EXPERIMENTAL = True | |
def compile(self, controlnet, backend, mode, fullgraph): | |
if not self._compiled: | |
try: | |
# for i, block in enumerate(controlnet.control_model.double_blocks): | |
# print("Compiling controlnet double_block", i) | |
# controlnet.control_model.double_blocks[i] = torch.compile(block, mode=mode, fullgraph=fullgraph, backend=backend) | |
controlnet.control_model = torch.compile(controlnet.control_model, mode=mode, fullgraph=fullgraph, backend=backend) | |
self._compiled = True | |
except: | |
self._compiled = False | |
raise RuntimeError("Failed to compile model") | |
return (controlnet, ) | |
class TorchCompileLTXModel: | |
def __init__(self): | |
self._compiled = False | |
def INPUT_TYPES(s): | |
return {"required": { | |
"model": ("MODEL",), | |
"backend": (["inductor", "cudagraphs"],), | |
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}), | |
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}), | |
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}), | |
}} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "patch" | |
CATEGORY = "KJNodes/experimental" | |
EXPERIMENTAL = True | |
def patch(self, model, backend, mode, fullgraph, dynamic): | |
m = model.clone() | |
diffusion_model = m.get_model_object("diffusion_model") | |
if not self._compiled: | |
try: | |
for i, block in enumerate(diffusion_model.transformer_blocks): | |
compiled_block = torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend) | |
m.add_object_patch(f"diffusion_model.transformer_blocks.{i}", compiled_block) | |
self._compiled = True | |
compile_settings = { | |
"backend": backend, | |
"mode": mode, | |
"fullgraph": fullgraph, | |
"dynamic": dynamic, | |
} | |
setattr(m.model, "compile_settings", compile_settings) | |
except: | |
raise RuntimeError("Failed to compile model") | |
return (m, ) | |
class StyleModelApplyAdvanced: | |
def INPUT_TYPES(s): | |
return {"required": {"conditioning": ("CONDITIONING", ), | |
"style_model": ("STYLE_MODEL", ), | |
"clip_vision_output": ("CLIP_VISION_OUTPUT", ), | |
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.001}), | |
}} | |
RETURN_TYPES = ("CONDITIONING",) | |
FUNCTION = "apply_stylemodel" | |
CATEGORY = "KJNodes/experimental" | |
DESCRIPTION = "StyleModelApply but with strength parameter" | |
def apply_stylemodel(self, clip_vision_output, style_model, conditioning, strength=1.0): | |
cond = style_model.get_cond(clip_vision_output).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0) | |
cond = strength * cond | |
c = [] | |
for t in conditioning: | |
n = [torch.cat((t[0], cond), dim=1), t[1].copy()] | |
c.append(n) | |
return (c, ) | |