Spaces:
Sleeping
Sleeping
import os | |
from pathlib import Path | |
import numpy as np | |
import tempfile | |
import tensorflow as tf | |
import mediapy | |
from PIL import Image | |
import cog | |
from eval import interpolator, util | |
_UINT8_MAX_F = float(np.iinfo(np.uint8).max) | |
class Predictor(cog.Predictor): | |
def setup(self): | |
import tensorflow as tf | |
print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU'))) | |
self.interpolator = interpolator.Interpolator("pretrained_models/film_net/Style/saved_model", None) | |
# Batched time. | |
self.batch_dt = np.full(shape=(1,), fill_value=0.5, dtype=np.float32) | |
def predict(self, frame1, frame2, times_to_interpolate): | |
INPUT_EXT = ['.png', '.jpg', '.jpeg'] | |
assert os.path.splitext(str(frame1))[-1] in INPUT_EXT and os.path.splitext(str(frame2))[-1] in INPUT_EXT, \ | |
"Please provide png, jpg or jpeg images." | |
# make sure 2 images are the same size | |
img1 = Image.open(str(frame1)) | |
img2 = Image.open(str(frame2)) | |
if not img1.size == img2.size: | |
img1 = img1.crop((0, 0, min(img1.size[0], img2.size[0]), min(img1.size[1], img2.size[1]))) | |
img2 = img2.crop((0, 0, min(img1.size[0], img2.size[0]), min(img1.size[1], img2.size[1]))) | |
frame1 = 'new_frame1.png' | |
frame2 = 'new_frame2.png' | |
img1.save(frame1) | |
img2.save(frame2) | |
if times_to_interpolate == 1: | |
# First batched image. | |
image_1 = util.read_image(str(frame1)) | |
image_batch_1 = np.expand_dims(image_1, axis=0) | |
# Second batched image. | |
image_2 = util.read_image(str(frame2)) | |
image_batch_2 = np.expand_dims(image_2, axis=0) | |
# Invoke the model once. | |
mid_frame = self.interpolator.interpolate(image_batch_1, image_batch_2, self.batch_dt)[0] | |
out_path = Path(tempfile.mkdtemp()) / "out.png" | |
util.write_image(str(out_path), mid_frame) | |
return out_path | |
input_frames = [str(frame1), str(frame2)] | |
frames = list( | |
util.interpolate_recursively_from_files( | |
input_frames, times_to_interpolate, self.interpolator)) | |
print('Interpolated frames generated, saving now as output video.') | |
ffmpeg_path = util.get_ffmpeg_path() | |
mediapy.set_ffmpeg(ffmpeg_path) | |
out_path = Path(tempfile.mkdtemp()) / "out.mp4" | |
mediapy.write_video(str(out_path), frames, fps=30) | |
return out_path | |