Spaces:
Restarting
on
Zero
Restarting
on
Zero
def attention_multiply(attn, model, q, k, v, out): | |
m = model.clone() | |
sd = model.model_state_dict() | |
for key in sd: | |
if key.endswith("{}.to_q.bias".format(attn)) or key.endswith("{}.to_q.weight".format(attn)): | |
m.add_patches({key: (None,)}, 0.0, q) | |
if key.endswith("{}.to_k.bias".format(attn)) or key.endswith("{}.to_k.weight".format(attn)): | |
m.add_patches({key: (None,)}, 0.0, k) | |
if key.endswith("{}.to_v.bias".format(attn)) or key.endswith("{}.to_v.weight".format(attn)): | |
m.add_patches({key: (None,)}, 0.0, v) | |
if key.endswith("{}.to_out.0.bias".format(attn)) or key.endswith("{}.to_out.0.weight".format(attn)): | |
m.add_patches({key: (None,)}, 0.0, out) | |
return m | |
class UNetSelfAttentionMultiply: | |
def INPUT_TYPES(s): | |
return {"required": { "model": ("MODEL",), | |
"q": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
"k": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
"v": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
}} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "patch" | |
CATEGORY = "_for_testing/attention_experiments" | |
def patch(self, model, q, k, v, out): | |
m = attention_multiply("attn1", model, q, k, v, out) | |
return (m, ) | |
class UNetCrossAttentionMultiply: | |
def INPUT_TYPES(s): | |
return {"required": { "model": ("MODEL",), | |
"q": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
"k": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
"v": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
}} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "patch" | |
CATEGORY = "_for_testing/attention_experiments" | |
def patch(self, model, q, k, v, out): | |
m = attention_multiply("attn2", model, q, k, v, out) | |
return (m, ) | |
class CLIPAttentionMultiply: | |
def INPUT_TYPES(s): | |
return {"required": { "clip": ("CLIP",), | |
"q": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
"k": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
"v": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
}} | |
RETURN_TYPES = ("CLIP",) | |
FUNCTION = "patch" | |
CATEGORY = "_for_testing/attention_experiments" | |
def patch(self, clip, q, k, v, out): | |
m = clip.clone() | |
sd = m.patcher.model_state_dict() | |
for key in sd: | |
if key.endswith("self_attn.q_proj.weight") or key.endswith("self_attn.q_proj.bias"): | |
m.add_patches({key: (None,)}, 0.0, q) | |
if key.endswith("self_attn.k_proj.weight") or key.endswith("self_attn.k_proj.bias"): | |
m.add_patches({key: (None,)}, 0.0, k) | |
if key.endswith("self_attn.v_proj.weight") or key.endswith("self_attn.v_proj.bias"): | |
m.add_patches({key: (None,)}, 0.0, v) | |
if key.endswith("self_attn.out_proj.weight") or key.endswith("self_attn.out_proj.bias"): | |
m.add_patches({key: (None,)}, 0.0, out) | |
return (m, ) | |
class UNetTemporalAttentionMultiply: | |
def INPUT_TYPES(s): | |
return {"required": { "model": ("MODEL",), | |
"self_structural": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
"self_temporal": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
"cross_structural": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
"cross_temporal": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
}} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "patch" | |
CATEGORY = "_for_testing/attention_experiments" | |
def patch(self, model, self_structural, self_temporal, cross_structural, cross_temporal): | |
m = model.clone() | |
sd = model.model_state_dict() | |
for k in sd: | |
if (k.endswith("attn1.to_out.0.bias") or k.endswith("attn1.to_out.0.weight")): | |
if '.time_stack.' in k: | |
m.add_patches({k: (None,)}, 0.0, self_temporal) | |
else: | |
m.add_patches({k: (None,)}, 0.0, self_structural) | |
elif (k.endswith("attn2.to_out.0.bias") or k.endswith("attn2.to_out.0.weight")): | |
if '.time_stack.' in k: | |
m.add_patches({k: (None,)}, 0.0, cross_temporal) | |
else: | |
m.add_patches({k: (None,)}, 0.0, cross_structural) | |
return (m, ) | |
NODE_CLASS_MAPPINGS = { | |
"UNetSelfAttentionMultiply": UNetSelfAttentionMultiply, | |
"UNetCrossAttentionMultiply": UNetCrossAttentionMultiply, | |
"CLIPAttentionMultiply": CLIPAttentionMultiply, | |
"UNetTemporalAttentionMultiply": UNetTemporalAttentionMultiply, | |
} | |