Spaces:
Building
on
Zero
Building
on
Zero
from .k_diffusion import sampling as k_diffusion_sampling | |
from .extra_samplers import uni_pc | |
import torch | |
import collections | |
from comfy import model_management | |
import math | |
import logging | |
import comfy.sampler_helpers | |
import scipy.stats | |
import numpy | |
def get_area_and_mult(conds, x_in, timestep_in): | |
dims = tuple(x_in.shape[2:]) | |
area = None | |
strength = 1.0 | |
if 'timestep_start' in conds: | |
timestep_start = conds['timestep_start'] | |
if timestep_in[0] > timestep_start: | |
return None | |
if 'timestep_end' in conds: | |
timestep_end = conds['timestep_end'] | |
if timestep_in[0] < timestep_end: | |
return None | |
if 'area' in conds: | |
area = list(conds['area']) | |
if 'strength' in conds: | |
strength = conds['strength'] | |
input_x = x_in | |
if area is not None: | |
for i in range(len(dims)): | |
area[i] = min(input_x.shape[i + 2] - area[len(dims) + i], area[i]) | |
input_x = input_x.narrow(i + 2, area[len(dims) + i], area[i]) | |
if 'mask' in conds: | |
# Scale the mask to the size of the input | |
# The mask should have been resized as we began the sampling process | |
mask_strength = 1.0 | |
if "mask_strength" in conds: | |
mask_strength = conds["mask_strength"] | |
mask = conds['mask'] | |
assert(mask.shape[1:] == x_in.shape[2:]) | |
mask = mask[:input_x.shape[0]] | |
if area is not None: | |
for i in range(len(dims)): | |
mask = mask.narrow(i + 1, area[len(dims) + i], area[i]) | |
mask = mask * mask_strength | |
mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1) | |
else: | |
mask = torch.ones_like(input_x) | |
mult = mask * strength | |
if 'mask' not in conds and area is not None: | |
rr = 8 | |
for i in range(len(dims)): | |
if area[len(dims) + i] != 0: | |
for t in range(rr): | |
m = mult.narrow(i + 2, t, 1) | |
m *= ((1.0/rr) * (t + 1)) | |
if (area[i] + area[len(dims) + i]) < x_in.shape[i + 2]: | |
for t in range(rr): | |
m = mult.narrow(i + 2, area[i] - 1 - t, 1) | |
m *= ((1.0/rr) * (t + 1)) | |
conditioning = {} | |
model_conds = conds["model_conds"] | |
for c in model_conds: | |
conditioning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area) | |
control = conds.get('control', None) | |
patches = None | |
if 'gligen' in conds: | |
gligen = conds['gligen'] | |
patches = {} | |
gligen_type = gligen[0] | |
gligen_model = gligen[1] | |
if gligen_type == "position": | |
gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device) | |
else: | |
gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device) | |
patches['middle_patch'] = [gligen_patch] | |
cond_obj = collections.namedtuple('cond_obj', ['input_x', 'mult', 'conditioning', 'area', 'control', 'patches']) | |
return cond_obj(input_x, mult, conditioning, area, control, patches) | |
def cond_equal_size(c1, c2): | |
if c1 is c2: | |
return True | |
if c1.keys() != c2.keys(): | |
return False | |
for k in c1: | |
if not c1[k].can_concat(c2[k]): | |
return False | |
return True | |
def can_concat_cond(c1, c2): | |
if c1.input_x.shape != c2.input_x.shape: | |
return False | |
def objects_concatable(obj1, obj2): | |
if (obj1 is None) != (obj2 is None): | |
return False | |
if obj1 is not None: | |
if obj1 is not obj2: | |
return False | |
return True | |
if not objects_concatable(c1.control, c2.control): | |
return False | |
if not objects_concatable(c1.patches, c2.patches): | |
return False | |
return cond_equal_size(c1.conditioning, c2.conditioning) | |
def cond_cat(c_list): | |
c_crossattn = [] | |
c_concat = [] | |
c_adm = [] | |
crossattn_max_len = 0 | |
temp = {} | |
for x in c_list: | |
for k in x: | |
cur = temp.get(k, []) | |
cur.append(x[k]) | |
temp[k] = cur | |
out = {} | |
for k in temp: | |
conds = temp[k] | |
out[k] = conds[0].concat(conds[1:]) | |
return out | |
def calc_cond_batch(model, conds, x_in, timestep, model_options): | |
out_conds = [] | |
out_counts = [] | |
to_run = [] | |
for i in range(len(conds)): | |
out_conds.append(torch.zeros_like(x_in)) | |
out_counts.append(torch.ones_like(x_in) * 1e-37) | |
cond = conds[i] | |
if cond is not None: | |
for x in cond: | |
p = get_area_and_mult(x, x_in, timestep) | |
if p is None: | |
continue | |
to_run += [(p, i)] | |
while len(to_run) > 0: | |
first = to_run[0] | |
first_shape = first[0][0].shape | |
to_batch_temp = [] | |
for x in range(len(to_run)): | |
if can_concat_cond(to_run[x][0], first[0]): | |
to_batch_temp += [x] | |
to_batch_temp.reverse() | |
to_batch = to_batch_temp[:1] | |
free_memory = model_management.get_free_memory(x_in.device) | |
for i in range(1, len(to_batch_temp) + 1): | |
batch_amount = to_batch_temp[:len(to_batch_temp)//i] | |
input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:] | |
if model.memory_required(input_shape) * 1.5 < free_memory: | |
to_batch = batch_amount | |
break | |
input_x = [] | |
mult = [] | |
c = [] | |
cond_or_uncond = [] | |
area = [] | |
control = None | |
patches = None | |
for x in to_batch: | |
o = to_run.pop(x) | |
p = o[0] | |
input_x.append(p.input_x) | |
mult.append(p.mult) | |
c.append(p.conditioning) | |
area.append(p.area) | |
cond_or_uncond.append(o[1]) | |
control = p.control | |
patches = p.patches | |
batch_chunks = len(cond_or_uncond) | |
input_x = torch.cat(input_x) | |
c = cond_cat(c) | |
timestep_ = torch.cat([timestep] * batch_chunks) | |
if control is not None: | |
c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond)) | |
transformer_options = {} | |
if 'transformer_options' in model_options: | |
transformer_options = model_options['transformer_options'].copy() | |
if patches is not None: | |
if "patches" in transformer_options: | |
cur_patches = transformer_options["patches"].copy() | |
for p in patches: | |
if p in cur_patches: | |
cur_patches[p] = cur_patches[p] + patches[p] | |
else: | |
cur_patches[p] = patches[p] | |
transformer_options["patches"] = cur_patches | |
else: | |
transformer_options["patches"] = patches | |
transformer_options["cond_or_uncond"] = cond_or_uncond[:] | |
transformer_options["sigmas"] = timestep | |
c['transformer_options'] = transformer_options | |
if 'model_function_wrapper' in model_options: | |
output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks) | |
else: | |
output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks) | |
for o in range(batch_chunks): | |
cond_index = cond_or_uncond[o] | |
a = area[o] | |
if a is None: | |
out_conds[cond_index] += output[o] * mult[o] | |
out_counts[cond_index] += mult[o] | |
else: | |
out_c = out_conds[cond_index] | |
out_cts = out_counts[cond_index] | |
dims = len(a) // 2 | |
for i in range(dims): | |
out_c = out_c.narrow(i + 2, a[i + dims], a[i]) | |
out_cts = out_cts.narrow(i + 2, a[i + dims], a[i]) | |
out_c += output[o] * mult[o] | |
out_cts += mult[o] | |
for i in range(len(out_conds)): | |
out_conds[i] /= out_counts[i] | |
return out_conds | |
def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options): #TODO: remove | |
logging.warning("WARNING: The comfy.samplers.calc_cond_uncond_batch function is deprecated please use the calc_cond_batch one instead.") | |
return tuple(calc_cond_batch(model, [cond, uncond], x_in, timestep, model_options)) | |
def cfg_function(model, cond_pred, uncond_pred, cond_scale, x, timestep, model_options={}, cond=None, uncond=None): | |
if "sampler_cfg_function" in model_options: | |
args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep, | |
"cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options} | |
cfg_result = x - model_options["sampler_cfg_function"](args) | |
else: | |
cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale | |
for fn in model_options.get("sampler_post_cfg_function", []): | |
args = {"denoised": cfg_result, "cond": cond, "uncond": uncond, "model": model, "uncond_denoised": uncond_pred, "cond_denoised": cond_pred, | |
"sigma": timestep, "model_options": model_options, "input": x} | |
cfg_result = fn(args) | |
return cfg_result | |
#The main sampling function shared by all the samplers | |
#Returns denoised | |
def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None): | |
if math.isclose(cond_scale, 1.0) and model_options.get("disable_cfg1_optimization", False) == False: | |
uncond_ = None | |
else: | |
uncond_ = uncond | |
conds = [cond, uncond_] | |
out = calc_cond_batch(model, conds, x, timestep, model_options) | |
for fn in model_options.get("sampler_pre_cfg_function", []): | |
args = {"conds":conds, "conds_out": out, "cond_scale": cond_scale, "timestep": timestep, | |
"input": x, "sigma": timestep, "model": model, "model_options": model_options} | |
out = fn(args) | |
return cfg_function(model, out[0], out[1], cond_scale, x, timestep, model_options=model_options, cond=cond, uncond=uncond_) | |
class KSamplerX0Inpaint: | |
def __init__(self, model, sigmas): | |
self.inner_model = model | |
self.sigmas = sigmas | |
def __call__(self, x, sigma, denoise_mask, model_options={}, seed=None): | |
if denoise_mask is not None: | |
if "denoise_mask_function" in model_options: | |
denoise_mask = model_options["denoise_mask_function"](sigma, denoise_mask, extra_options={"model": self.inner_model, "sigmas": self.sigmas}) | |
latent_mask = 1. - denoise_mask | |
x = x * denoise_mask + self.inner_model.inner_model.model_sampling.noise_scaling(sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1)), self.noise, self.latent_image) * latent_mask | |
out = self.inner_model(x, sigma, model_options=model_options, seed=seed) | |
if denoise_mask is not None: | |
out = out * denoise_mask + self.latent_image * latent_mask | |
return out | |
def simple_scheduler(model_sampling, steps): | |
s = model_sampling | |
sigs = [] | |
ss = len(s.sigmas) / steps | |
for x in range(steps): | |
sigs += [float(s.sigmas[-(1 + int(x * ss))])] | |
sigs += [0.0] | |
return torch.FloatTensor(sigs) | |
def ddim_scheduler(model_sampling, steps): | |
s = model_sampling | |
sigs = [] | |
x = 1 | |
if math.isclose(float(s.sigmas[x]), 0, abs_tol=0.00001): | |
steps += 1 | |
sigs = [] | |
else: | |
sigs = [0.0] | |
ss = max(len(s.sigmas) // steps, 1) | |
while x < len(s.sigmas): | |
sigs += [float(s.sigmas[x])] | |
x += ss | |
sigs = sigs[::-1] | |
return torch.FloatTensor(sigs) | |
def normal_scheduler(model_sampling, steps, sgm=False, floor=False): | |
s = model_sampling | |
start = s.timestep(s.sigma_max) | |
end = s.timestep(s.sigma_min) | |
append_zero = True | |
if sgm: | |
timesteps = torch.linspace(start, end, steps + 1)[:-1] | |
else: | |
if math.isclose(float(s.sigma(end)), 0, abs_tol=0.00001): | |
steps += 1 | |
append_zero = False | |
timesteps = torch.linspace(start, end, steps) | |
sigs = [] | |
for x in range(len(timesteps)): | |
ts = timesteps[x] | |
sigs.append(float(s.sigma(ts))) | |
if append_zero: | |
sigs += [0.0] | |
return torch.FloatTensor(sigs) | |
# Implemented based on: https://arxiv.org/abs/2407.12173 | |
def beta_scheduler(model_sampling, steps, alpha=0.6, beta=0.6): | |
total_timesteps = (len(model_sampling.sigmas) - 1) | |
ts = 1 - numpy.linspace(0, 1, steps, endpoint=False) | |
ts = numpy.rint(scipy.stats.beta.ppf(ts, alpha, beta) * total_timesteps) | |
sigs = [] | |
last_t = -1 | |
for t in ts: | |
if t != last_t: | |
sigs += [float(model_sampling.sigmas[int(t)])] | |
last_t = t | |
sigs += [0.0] | |
return torch.FloatTensor(sigs) | |
# from: https://github.com/genmoai/models/blob/main/src/mochi_preview/infer.py#L41 | |
def linear_quadratic_schedule(model_sampling, steps, threshold_noise=0.025, linear_steps=None): | |
if steps == 1: | |
sigma_schedule = [1.0, 0.0] | |
else: | |
if linear_steps is None: | |
linear_steps = steps // 2 | |
linear_sigma_schedule = [i * threshold_noise / linear_steps for i in range(linear_steps)] | |
threshold_noise_step_diff = linear_steps - threshold_noise * steps | |
quadratic_steps = steps - linear_steps | |
quadratic_coef = threshold_noise_step_diff / (linear_steps * quadratic_steps ** 2) | |
linear_coef = threshold_noise / linear_steps - 2 * threshold_noise_step_diff / (quadratic_steps ** 2) | |
const = quadratic_coef * (linear_steps ** 2) | |
quadratic_sigma_schedule = [ | |
quadratic_coef * (i ** 2) + linear_coef * i + const | |
for i in range(linear_steps, steps) | |
] | |
sigma_schedule = linear_sigma_schedule + quadratic_sigma_schedule + [1.0] | |
sigma_schedule = [1.0 - x for x in sigma_schedule] | |
return torch.FloatTensor(sigma_schedule) * model_sampling.sigma_max.cpu() | |
def get_mask_aabb(masks): | |
if masks.numel() == 0: | |
return torch.zeros((0, 4), device=masks.device, dtype=torch.int) | |
b = masks.shape[0] | |
bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int) | |
is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool) | |
for i in range(b): | |
mask = masks[i] | |
if mask.numel() == 0: | |
continue | |
if torch.max(mask != 0) == False: | |
is_empty[i] = True | |
continue | |
y, x = torch.where(mask) | |
bounding_boxes[i, 0] = torch.min(x) | |
bounding_boxes[i, 1] = torch.min(y) | |
bounding_boxes[i, 2] = torch.max(x) | |
bounding_boxes[i, 3] = torch.max(y) | |
return bounding_boxes, is_empty | |
def resolve_areas_and_cond_masks_multidim(conditions, dims, device): | |
# We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes. | |
# While we're doing this, we can also resolve the mask device and scaling for performance reasons | |
for i in range(len(conditions)): | |
c = conditions[i] | |
if 'area' in c: | |
area = c['area'] | |
if area[0] == "percentage": | |
modified = c.copy() | |
a = area[1:] | |
a_len = len(a) // 2 | |
area = () | |
for d in range(len(dims)): | |
area += (max(1, round(a[d] * dims[d])),) | |
for d in range(len(dims)): | |
area += (round(a[d + a_len] * dims[d]),) | |
modified['area'] = area | |
c = modified | |
conditions[i] = c | |
if 'mask' in c: | |
mask = c['mask'] | |
mask = mask.to(device=device) | |
modified = c.copy() | |
if len(mask.shape) == len(dims): | |
mask = mask.unsqueeze(0) | |
if mask.shape[1:] != dims: | |
mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=dims, mode='bilinear', align_corners=False).squeeze(1) | |
if modified.get("set_area_to_bounds", False): #TODO: handle dim != 2 | |
bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0) | |
boxes, is_empty = get_mask_aabb(bounds) | |
if is_empty[0]: | |
# Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway) | |
modified['area'] = (8, 8, 0, 0) | |
else: | |
box = boxes[0] | |
H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0]) | |
H = max(8, H) | |
W = max(8, W) | |
area = (int(H), int(W), int(Y), int(X)) | |
modified['area'] = area | |
modified['mask'] = mask | |
conditions[i] = modified | |
def resolve_areas_and_cond_masks(conditions, h, w, device): | |
logging.warning("WARNING: The comfy.samplers.resolve_areas_and_cond_masks function is deprecated please use the resolve_areas_and_cond_masks_multidim one instead.") | |
return resolve_areas_and_cond_masks_multidim(conditions, [h, w], device) | |
def create_cond_with_same_area_if_none(conds, c): #TODO: handle dim != 2 | |
if 'area' not in c: | |
return | |
c_area = c['area'] | |
smallest = None | |
for x in conds: | |
if 'area' in x: | |
a = x['area'] | |
if c_area[2] >= a[2] and c_area[3] >= a[3]: | |
if a[0] + a[2] >= c_area[0] + c_area[2]: | |
if a[1] + a[3] >= c_area[1] + c_area[3]: | |
if smallest is None: | |
smallest = x | |
elif 'area' not in smallest: | |
smallest = x | |
else: | |
if smallest['area'][0] * smallest['area'][1] > a[0] * a[1]: | |
smallest = x | |
else: | |
if smallest is None: | |
smallest = x | |
if smallest is None: | |
return | |
if 'area' in smallest: | |
if smallest['area'] == c_area: | |
return | |
out = c.copy() | |
out['model_conds'] = smallest['model_conds'].copy() #TODO: which fields should be copied? | |
conds += [out] | |
def calculate_start_end_timesteps(model, conds): | |
s = model.model_sampling | |
for t in range(len(conds)): | |
x = conds[t] | |
timestep_start = None | |
timestep_end = None | |
if 'start_percent' in x: | |
timestep_start = s.percent_to_sigma(x['start_percent']) | |
if 'end_percent' in x: | |
timestep_end = s.percent_to_sigma(x['end_percent']) | |
if (timestep_start is not None) or (timestep_end is not None): | |
n = x.copy() | |
if (timestep_start is not None): | |
n['timestep_start'] = timestep_start | |
if (timestep_end is not None): | |
n['timestep_end'] = timestep_end | |
conds[t] = n | |
def pre_run_control(model, conds): | |
s = model.model_sampling | |
for t in range(len(conds)): | |
x = conds[t] | |
timestep_start = None | |
timestep_end = None | |
percent_to_timestep_function = lambda a: s.percent_to_sigma(a) | |
if 'control' in x: | |
x['control'].pre_run(model, percent_to_timestep_function) | |
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func): | |
cond_cnets = [] | |
cond_other = [] | |
uncond_cnets = [] | |
uncond_other = [] | |
for t in range(len(conds)): | |
x = conds[t] | |
if 'area' not in x: | |
if name in x and x[name] is not None: | |
cond_cnets.append(x[name]) | |
else: | |
cond_other.append((x, t)) | |
for t in range(len(uncond)): | |
x = uncond[t] | |
if 'area' not in x: | |
if name in x and x[name] is not None: | |
uncond_cnets.append(x[name]) | |
else: | |
uncond_other.append((x, t)) | |
if len(uncond_cnets) > 0: | |
return | |
for x in range(len(cond_cnets)): | |
temp = uncond_other[x % len(uncond_other)] | |
o = temp[0] | |
if name in o and o[name] is not None: | |
n = o.copy() | |
n[name] = uncond_fill_func(cond_cnets, x) | |
uncond += [n] | |
else: | |
n = o.copy() | |
n[name] = uncond_fill_func(cond_cnets, x) | |
uncond[temp[1]] = n | |
def encode_model_conds(model_function, conds, noise, device, prompt_type, **kwargs): | |
for t in range(len(conds)): | |
x = conds[t] | |
params = x.copy() | |
params["device"] = device | |
params["noise"] = noise | |
default_width = None | |
if len(noise.shape) >= 4: #TODO: 8 multiple should be set by the model | |
default_width = noise.shape[3] * 8 | |
params["width"] = params.get("width", default_width) | |
params["height"] = params.get("height", noise.shape[2] * 8) | |
params["prompt_type"] = params.get("prompt_type", prompt_type) | |
for k in kwargs: | |
if k not in params: | |
params[k] = kwargs[k] | |
out = model_function(**params) | |
x = x.copy() | |
model_conds = x['model_conds'].copy() | |
for k in out: | |
model_conds[k] = out[k] | |
x['model_conds'] = model_conds | |
conds[t] = x | |
return conds | |
class Sampler: | |
def sample(self): | |
pass | |
def max_denoise(self, model_wrap, sigmas): | |
max_sigma = float(model_wrap.inner_model.model_sampling.sigma_max) | |
sigma = float(sigmas[0]) | |
return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma | |
KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2","dpm_2", "dpm_2_ancestral", | |
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu", | |
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm", | |
"ipndm", "ipndm_v", "deis"] | |
class KSAMPLER(Sampler): | |
def __init__(self, sampler_function, extra_options={}, inpaint_options={}): | |
self.sampler_function = sampler_function | |
self.extra_options = extra_options | |
self.inpaint_options = inpaint_options | |
def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False): | |
extra_args["denoise_mask"] = denoise_mask | |
model_k = KSamplerX0Inpaint(model_wrap, sigmas) | |
model_k.latent_image = latent_image | |
if self.inpaint_options.get("random", False): #TODO: Should this be the default? | |
generator = torch.manual_seed(extra_args.get("seed", 41) + 1) | |
model_k.noise = torch.randn(noise.shape, generator=generator, device="cpu").to(noise.dtype).to(noise.device) | |
else: | |
model_k.noise = noise | |
noise = model_wrap.inner_model.model_sampling.noise_scaling(sigmas[0], noise, latent_image, self.max_denoise(model_wrap, sigmas)) | |
k_callback = None | |
total_steps = len(sigmas) - 1 | |
if callback is not None: | |
k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps) | |
samples = self.sampler_function(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **self.extra_options) | |
samples = model_wrap.inner_model.model_sampling.inverse_noise_scaling(sigmas[-1], samples) | |
return samples | |
def ksampler(sampler_name, extra_options={}, inpaint_options={}): | |
if sampler_name == "dpm_fast": | |
def dpm_fast_function(model, noise, sigmas, extra_args, callback, disable): | |
if len(sigmas) <= 1: | |
return noise | |
sigma_min = sigmas[-1] | |
if sigma_min == 0: | |
sigma_min = sigmas[-2] | |
total_steps = len(sigmas) - 1 | |
return k_diffusion_sampling.sample_dpm_fast(model, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=callback, disable=disable) | |
sampler_function = dpm_fast_function | |
elif sampler_name == "dpm_adaptive": | |
def dpm_adaptive_function(model, noise, sigmas, extra_args, callback, disable, **extra_options): | |
if len(sigmas) <= 1: | |
return noise | |
sigma_min = sigmas[-1] | |
if sigma_min == 0: | |
sigma_min = sigmas[-2] | |
return k_diffusion_sampling.sample_dpm_adaptive(model, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=callback, disable=disable, **extra_options) | |
sampler_function = dpm_adaptive_function | |
else: | |
sampler_function = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name)) | |
return KSAMPLER(sampler_function, extra_options, inpaint_options) | |
def process_conds(model, noise, conds, device, latent_image=None, denoise_mask=None, seed=None): | |
for k in conds: | |
conds[k] = conds[k][:] | |
resolve_areas_and_cond_masks_multidim(conds[k], noise.shape[2:], device) | |
for k in conds: | |
calculate_start_end_timesteps(model, conds[k]) | |
if hasattr(model, 'extra_conds'): | |
for k in conds: | |
conds[k] = encode_model_conds(model.extra_conds, conds[k], noise, device, k, latent_image=latent_image, denoise_mask=denoise_mask, seed=seed) | |
#make sure each cond area has an opposite one with the same area | |
for k in conds: | |
for c in conds[k]: | |
for kk in conds: | |
if k != kk: | |
create_cond_with_same_area_if_none(conds[kk], c) | |
for k in conds: | |
pre_run_control(model, conds[k]) | |
if "positive" in conds: | |
positive = conds["positive"] | |
for k in conds: | |
if k != "positive": | |
apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), conds[k], 'control', lambda cond_cnets, x: cond_cnets[x]) | |
apply_empty_x_to_equal_area(positive, conds[k], 'gligen', lambda cond_cnets, x: cond_cnets[x]) | |
return conds | |
class CFGGuider: | |
def __init__(self, model_patcher): | |
self.model_patcher = model_patcher | |
self.model_options = model_patcher.model_options | |
self.original_conds = {} | |
self.cfg = 1.0 | |
def set_conds(self, positive, negative): | |
self.inner_set_conds({"positive": positive, "negative": negative}) | |
def set_cfg(self, cfg): | |
self.cfg = cfg | |
def inner_set_conds(self, conds): | |
for k in conds: | |
self.original_conds[k] = comfy.sampler_helpers.convert_cond(conds[k]) | |
def __call__(self, *args, **kwargs): | |
return self.predict_noise(*args, **kwargs) | |
def predict_noise(self, x, timestep, model_options={}, seed=None): | |
return sampling_function(self.inner_model, x, timestep, self.conds.get("negative", None), self.conds.get("positive", None), self.cfg, model_options=model_options, seed=seed) | |
def inner_sample(self, noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed): | |
if latent_image is not None and torch.count_nonzero(latent_image) > 0: #Don't shift the empty latent image. | |
latent_image = self.inner_model.process_latent_in(latent_image) | |
self.conds = process_conds(self.inner_model, noise, self.conds, device, latent_image, denoise_mask, seed) | |
extra_args = {"model_options": self.model_options, "seed":seed} | |
samples = sampler.sample(self, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar) | |
return self.inner_model.process_latent_out(samples.to(torch.float32)) | |
def sample(self, noise, latent_image, sampler, sigmas, denoise_mask=None, callback=None, disable_pbar=False, seed=None): | |
if sigmas.shape[-1] == 0: | |
return latent_image | |
self.conds = {} | |
for k in self.original_conds: | |
self.conds[k] = list(map(lambda a: a.copy(), self.original_conds[k])) | |
self.inner_model, self.conds, self.loaded_models = comfy.sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds) | |
device = self.model_patcher.load_device | |
if denoise_mask is not None: | |
denoise_mask = comfy.sampler_helpers.prepare_mask(denoise_mask, noise.shape, device) | |
noise = noise.to(device) | |
latent_image = latent_image.to(device) | |
sigmas = sigmas.to(device) | |
output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed) | |
comfy.sampler_helpers.cleanup_models(self.conds, self.loaded_models) | |
del self.inner_model | |
del self.conds | |
del self.loaded_models | |
return output | |
def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None): | |
cfg_guider = CFGGuider(model) | |
cfg_guider.set_conds(positive, negative) | |
cfg_guider.set_cfg(cfg) | |
return cfg_guider.sample(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed) | |
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform", "beta", "linear_quadratic"] | |
SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"] | |
def calculate_sigmas(model_sampling, scheduler_name, steps): | |
if scheduler_name == "karras": | |
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model_sampling.sigma_min), sigma_max=float(model_sampling.sigma_max)) | |
elif scheduler_name == "exponential": | |
sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model_sampling.sigma_min), sigma_max=float(model_sampling.sigma_max)) | |
elif scheduler_name == "normal": | |
sigmas = normal_scheduler(model_sampling, steps) | |
elif scheduler_name == "simple": | |
sigmas = simple_scheduler(model_sampling, steps) | |
elif scheduler_name == "ddim_uniform": | |
sigmas = ddim_scheduler(model_sampling, steps) | |
elif scheduler_name == "sgm_uniform": | |
sigmas = normal_scheduler(model_sampling, steps, sgm=True) | |
elif scheduler_name == "beta": | |
sigmas = beta_scheduler(model_sampling, steps) | |
elif scheduler_name == "linear_quadratic": | |
sigmas = linear_quadratic_schedule(model_sampling, steps) | |
else: | |
logging.error("error invalid scheduler {}".format(scheduler_name)) | |
return sigmas | |
def sampler_object(name): | |
if name == "uni_pc": | |
sampler = KSAMPLER(uni_pc.sample_unipc) | |
elif name == "uni_pc_bh2": | |
sampler = KSAMPLER(uni_pc.sample_unipc_bh2) | |
elif name == "ddim": | |
sampler = ksampler("euler", inpaint_options={"random": True}) | |
else: | |
sampler = ksampler(name) | |
return sampler | |
class KSampler: | |
SCHEDULERS = SCHEDULER_NAMES | |
SAMPLERS = SAMPLER_NAMES | |
DISCARD_PENULTIMATE_SIGMA_SAMPLERS = set(('dpm_2', 'dpm_2_ancestral', 'uni_pc', 'uni_pc_bh2')) | |
def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}): | |
self.model = model | |
self.device = device | |
if scheduler not in self.SCHEDULERS: | |
scheduler = self.SCHEDULERS[0] | |
if sampler not in self.SAMPLERS: | |
sampler = self.SAMPLERS[0] | |
self.scheduler = scheduler | |
self.sampler = sampler | |
self.set_steps(steps, denoise) | |
self.denoise = denoise | |
self.model_options = model_options | |
def calculate_sigmas(self, steps): | |
sigmas = None | |
discard_penultimate_sigma = False | |
if self.sampler in self.DISCARD_PENULTIMATE_SIGMA_SAMPLERS: | |
steps += 1 | |
discard_penultimate_sigma = True | |
sigmas = calculate_sigmas(self.model.get_model_object("model_sampling"), self.scheduler, steps) | |
if discard_penultimate_sigma: | |
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]]) | |
return sigmas | |
def set_steps(self, steps, denoise=None): | |
self.steps = steps | |
if denoise is None or denoise > 0.9999: | |
self.sigmas = self.calculate_sigmas(steps).to(self.device) | |
else: | |
if denoise <= 0.0: | |
self.sigmas = torch.FloatTensor([]) | |
else: | |
new_steps = int(steps/denoise) | |
sigmas = self.calculate_sigmas(new_steps).to(self.device) | |
self.sigmas = sigmas[-(steps + 1):] | |
def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None): | |
if sigmas is None: | |
sigmas = self.sigmas | |
if last_step is not None and last_step < (len(sigmas) - 1): | |
sigmas = sigmas[:last_step + 1] | |
if force_full_denoise: | |
sigmas[-1] = 0 | |
if start_step is not None: | |
if start_step < (len(sigmas) - 1): | |
sigmas = sigmas[start_step:] | |
else: | |
if latent_image is not None: | |
return latent_image | |
else: | |
return torch.zeros_like(noise) | |
sampler = sampler_object(self.sampler) | |
return sample(self.model, noise, positive, negative, cfg, self.device, sampler, sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed) | |