Spaces:
Runtime error
Runtime error
# Copyright 2022 Google LLC | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# https://www.apache.org/licenses/LICENSE-2.0 | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Utility functions for creating a tf.train.Example proto of image triplets.""" | |
import io | |
import os | |
from typing import Any, List, Mapping, Optional | |
from absl import logging | |
import apache_beam as beam | |
import numpy as np | |
import PIL.Image | |
import six | |
from skimage import transform | |
import tensorflow as tf | |
_UINT8_MAX_F = float(np.iinfo(np.uint8).max) | |
_GAMMA = 2.2 | |
def _resample_image(image: np.ndarray, resample_image_width: int, | |
resample_image_height: int) -> np.ndarray: | |
"""Re-samples and returns an `image` to be `resample_image_size`.""" | |
# Convert image from uint8 gamma [0..255] to float linear [0..1]. | |
image = image.astype(np.float32) / _UINT8_MAX_F | |
image = np.power(np.clip(image, 0, 1), _GAMMA) | |
# Re-size the image | |
resample_image_size = (resample_image_height, resample_image_width) | |
image = transform.resize_local_mean(image, resample_image_size) | |
# Convert back from float linear [0..1] to uint8 gamma [0..255]. | |
image = np.power(np.clip(image, 0, 1), 1.0 / _GAMMA) | |
image = np.clip(image * _UINT8_MAX_F + 0.5, 0.0, | |
_UINT8_MAX_F).astype(np.uint8) | |
return image | |
def generate_image_triplet_example( | |
triplet_dict: Mapping[str, str], | |
scale_factor: int = 1, | |
center_crop_factor: int = 1) -> Optional[tf.train.Example]: | |
"""Generates and serializes a tf.train.Example proto from an image triplet. | |
Default setting creates a triplet Example with the input images unchanged. | |
Images are processed in the order of center-crop then downscale. | |
Args: | |
triplet_dict: A dict of image key to filepath of the triplet images. | |
scale_factor: An integer scale factor to isotropically downsample images. | |
center_crop_factor: An integer cropping factor to center crop images with | |
the original resolution but isotropically downsized by the factor. | |
Returns: | |
tf.train.Example proto, or None upon error. | |
Raises: | |
ValueError if triplet_dict length is different from three or the scale input | |
arguments are non-positive. | |
""" | |
if len(triplet_dict) != 3: | |
raise ValueError( | |
f'Length of triplet_dict must be exactly 3, not {len(triplet_dict)}.') | |
if scale_factor <= 0 or center_crop_factor <= 0: | |
raise ValueError(f'(scale_factor, center_crop_factor) must be positive, ' | |
f'Not ({scale_factor}, {center_crop_factor}).') | |
feature = {} | |
# Keep track of the path where the images came from for debugging purposes. | |
mid_frame_path = os.path.dirname(triplet_dict['frame_1']) | |
feature['path'] = tf.train.Feature( | |
bytes_list=tf.train.BytesList(value=[six.ensure_binary(mid_frame_path)])) | |
for image_key, image_path in triplet_dict.items(): | |
if not tf.io.gfile.exists(image_path): | |
logging.error('File not found: %s', image_path) | |
return None | |
# Note: we need both the raw bytes and the image size. | |
# PIL.Image does not expose a method to grab the original bytes. | |
# (Also it is not aware of non-local file systems.) | |
# So we read with tf.io.gfile.GFile to get the bytes, and then wrap the | |
# bytes in BytesIO to let PIL.Image open the image. | |
try: | |
byte_array = tf.io.gfile.GFile(image_path, 'rb').read() | |
except tf.errors.InvalidArgumentError: | |
logging.exception('Cannot read image file: %s', image_path) | |
return None | |
try: | |
pil_image = PIL.Image.open(io.BytesIO(byte_array)) | |
except PIL.UnidentifiedImageError: | |
logging.exception('Cannot decode image file: %s', image_path) | |
return None | |
width, height = pil_image.size | |
pil_image_format = pil_image.format | |
# Optionally center-crop images and downsize images | |
# by `center_crop_factor`. | |
if center_crop_factor > 1: | |
image = np.array(pil_image) | |
quarter_height = image.shape[0] // (2 * center_crop_factor) | |
quarter_width = image.shape[1] // (2 * center_crop_factor) | |
image = image[quarter_height:-quarter_height, | |
quarter_width:-quarter_width, :] | |
pil_image = PIL.Image.fromarray(image) | |
# Update image properties. | |
height, width, _ = image.shape | |
buffer = io.BytesIO() | |
try: | |
pil_image.save(buffer, format='PNG') | |
except OSError: | |
logging.exception('Cannot encode image file: %s', image_path) | |
return None | |
byte_array = buffer.getvalue() | |
# Optionally downsample images by `scale_factor`. | |
if scale_factor > 1: | |
image = np.array(pil_image) | |
image = _resample_image(image, image.shape[1] // scale_factor, | |
image.shape[0] // scale_factor) | |
pil_image = PIL.Image.fromarray(image) | |
# Update image properties. | |
height, width, _ = image.shape | |
buffer = io.BytesIO() | |
try: | |
pil_image.save(buffer, format='PNG') | |
except OSError: | |
logging.exception('Cannot encode image file: %s', image_path) | |
return None | |
byte_array = buffer.getvalue() | |
# Create tf Features. | |
image_feature = tf.train.Feature( | |
bytes_list=tf.train.BytesList(value=[byte_array])) | |
height_feature = tf.train.Feature( | |
int64_list=tf.train.Int64List(value=[height])) | |
width_feature = tf.train.Feature( | |
int64_list=tf.train.Int64List(value=[width])) | |
encoding = tf.train.Feature( | |
bytes_list=tf.train.BytesList( | |
value=[six.ensure_binary(pil_image_format.lower())])) | |
# Update feature map. | |
feature[f'{image_key}/encoded'] = image_feature | |
feature[f'{image_key}/format'] = encoding | |
feature[f'{image_key}/height'] = height_feature | |
feature[f'{image_key}/width'] = width_feature | |
# Create tf Example. | |
features = tf.train.Features(feature=feature) | |
example = tf.train.Example(features=features) | |
return example | |
class ExampleGenerator(beam.DoFn): | |
"""Generate a tf.train.Example per input image triplet filepaths.""" | |
def __init__(self, | |
images_map: Mapping[str, Any], | |
scale_factor: int = 1, | |
center_crop_factor: int = 1): | |
"""Initializes the map of 3 images to add to each tf.train.Example. | |
Args: | |
images_map: Map from image key to image filepath. | |
scale_factor: A scale factor to downsample frames. | |
center_crop_factor: A factor to centercrop and downsize frames. | |
""" | |
super().__init__() | |
self._images_map = images_map | |
self._scale_factor = scale_factor | |
self._center_crop_factor = center_crop_factor | |
def process(self, triplet_dict: Mapping[str, str]) -> List[bytes]: | |
"""Generates a serialized tf.train.Example for a triplet of images. | |
Args: | |
triplet_dict: A dict of image key to filepath of the triplet images. | |
Returns: | |
A serialized tf.train.Example proto. No shuffling is applied. | |
""" | |
example = generate_image_triplet_example(triplet_dict, self._scale_factor, | |
self._center_crop_factor) | |
if example: | |
return [example.SerializeToString()] | |
else: | |
return [] | |