Spaces:
Sleeping
Sleeping
# to be used with https://github.com/a1lazydog/ComfyUI-AudioScheduler | |
import torch | |
from torchvision.transforms import functional as TF | |
from PIL import Image, ImageDraw | |
import numpy as np | |
from ..utility.utility import pil2tensor | |
from nodes import MAX_RESOLUTION | |
class NormalizedAmplitudeToMask: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"normalized_amp": ("NORMALIZED_AMPLITUDE",), | |
"width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}), | |
"height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}), | |
"frame_offset": ("INT", {"default": 0,"min": -255, "max": 255, "step": 1}), | |
"location_x": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}), | |
"location_y": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}), | |
"size": ("INT", {"default": 128,"min": 8, "max": 4096, "step": 1}), | |
"shape": ( | |
[ | |
'none', | |
'circle', | |
'square', | |
'triangle', | |
], | |
{ | |
"default": 'none' | |
}), | |
"color": ( | |
[ | |
'white', | |
'amplitude', | |
], | |
{ | |
"default": 'amplitude' | |
}), | |
},} | |
CATEGORY = "KJNodes/audio" | |
RETURN_TYPES = ("MASK",) | |
FUNCTION = "convert" | |
DESCRIPTION = """ | |
Works as a bridge to the AudioScheduler -nodes: | |
https://github.com/a1lazydog/ComfyUI-AudioScheduler | |
Creates masks based on the normalized amplitude. | |
""" | |
def convert(self, normalized_amp, width, height, frame_offset, shape, location_x, location_y, size, color): | |
# Ensure normalized_amp is an array and within the range [0, 1] | |
normalized_amp = np.clip(normalized_amp, 0.0, 1.0) | |
# Offset the amplitude values by rolling the array | |
normalized_amp = np.roll(normalized_amp, frame_offset) | |
# Initialize an empty list to hold the image tensors | |
out = [] | |
# Iterate over each amplitude value to create an image | |
for amp in normalized_amp: | |
# Scale the amplitude value to cover the full range of grayscale values | |
if color == 'amplitude': | |
grayscale_value = int(amp * 255) | |
elif color == 'white': | |
grayscale_value = 255 | |
# Convert the grayscale value to an RGB format | |
gray_color = (grayscale_value, grayscale_value, grayscale_value) | |
finalsize = size * amp | |
if shape == 'none': | |
shapeimage = Image.new("RGB", (width, height), gray_color) | |
else: | |
shapeimage = Image.new("RGB", (width, height), "black") | |
draw = ImageDraw.Draw(shapeimage) | |
if shape == 'circle' or shape == 'square': | |
# Define the bounding box for the shape | |
left_up_point = (location_x - finalsize, location_y - finalsize) | |
right_down_point = (location_x + finalsize,location_y + finalsize) | |
two_points = [left_up_point, right_down_point] | |
if shape == 'circle': | |
draw.ellipse(two_points, fill=gray_color) | |
elif shape == 'square': | |
draw.rectangle(two_points, fill=gray_color) | |
elif shape == 'triangle': | |
# Define the points for the triangle | |
left_up_point = (location_x - finalsize, location_y + finalsize) # bottom left | |
right_down_point = (location_x + finalsize, location_y + finalsize) # bottom right | |
top_point = (location_x, location_y) # top point | |
draw.polygon([top_point, left_up_point, right_down_point], fill=gray_color) | |
shapeimage = pil2tensor(shapeimage) | |
mask = shapeimage[:, :, :, 0] | |
out.append(mask) | |
return (torch.cat(out, dim=0),) | |
class NormalizedAmplitudeToFloatList: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"normalized_amp": ("NORMALIZED_AMPLITUDE",), | |
},} | |
CATEGORY = "KJNodes/audio" | |
RETURN_TYPES = ("FLOAT",) | |
FUNCTION = "convert" | |
DESCRIPTION = """ | |
Works as a bridge to the AudioScheduler -nodes: | |
https://github.com/a1lazydog/ComfyUI-AudioScheduler | |
Creates a list of floats from the normalized amplitude. | |
""" | |
def convert(self, normalized_amp): | |
# Ensure normalized_amp is an array and within the range [0, 1] | |
normalized_amp = np.clip(normalized_amp, 0.0, 1.0) | |
return (normalized_amp.tolist(),) | |
class OffsetMaskByNormalizedAmplitude: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"normalized_amp": ("NORMALIZED_AMPLITUDE",), | |
"mask": ("MASK",), | |
"x": ("INT", { "default": 0, "min": -4096, "max": MAX_RESOLUTION, "step": 1, "display": "number" }), | |
"y": ("INT", { "default": 0, "min": -4096, "max": MAX_RESOLUTION, "step": 1, "display": "number" }), | |
"rotate": ("BOOLEAN", { "default": False }), | |
"angle_multiplier": ("FLOAT", { "default": 0.0, "min": -1.0, "max": 1.0, "step": 0.001, "display": "number" }), | |
} | |
} | |
RETURN_TYPES = ("MASK",) | |
RETURN_NAMES = ("mask",) | |
FUNCTION = "offset" | |
CATEGORY = "KJNodes/audio" | |
DESCRIPTION = """ | |
Works as a bridge to the AudioScheduler -nodes: | |
https://github.com/a1lazydog/ComfyUI-AudioScheduler | |
Offsets masks based on the normalized amplitude. | |
""" | |
def offset(self, mask, x, y, angle_multiplier, rotate, normalized_amp): | |
# Ensure normalized_amp is an array and within the range [0, 1] | |
offsetmask = mask.clone() | |
normalized_amp = np.clip(normalized_amp, 0.0, 1.0) | |
batch_size, height, width = mask.shape | |
if rotate: | |
for i in range(batch_size): | |
rotation_amp = int(normalized_amp[i] * (360 * angle_multiplier)) | |
rotation_angle = rotation_amp | |
offsetmask[i] = TF.rotate(offsetmask[i].unsqueeze(0), rotation_angle).squeeze(0) | |
if x != 0 or y != 0: | |
for i in range(batch_size): | |
offset_amp = normalized_amp[i] * 10 | |
shift_x = min(x*offset_amp, width-1) | |
shift_y = min(y*offset_amp, height-1) | |
if shift_x != 0: | |
offsetmask[i] = torch.roll(offsetmask[i], shifts=int(shift_x), dims=1) | |
if shift_y != 0: | |
offsetmask[i] = torch.roll(offsetmask[i], shifts=int(shift_y), dims=0) | |
return offsetmask, | |
class ImageTransformByNormalizedAmplitude: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"normalized_amp": ("NORMALIZED_AMPLITUDE",), | |
"zoom_scale": ("FLOAT", { "default": 0.0, "min": -1.0, "max": 1.0, "step": 0.001, "display": "number" }), | |
"x_offset": ("INT", { "default": 0, "min": (1 -MAX_RESOLUTION), "max": MAX_RESOLUTION, "step": 1, "display": "number" }), | |
"y_offset": ("INT", { "default": 0, "min": (1 -MAX_RESOLUTION), "max": MAX_RESOLUTION, "step": 1, "display": "number" }), | |
"cumulative": ("BOOLEAN", { "default": False }), | |
"image": ("IMAGE",), | |
}} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "amptransform" | |
CATEGORY = "KJNodes/audio" | |
DESCRIPTION = """ | |
Works as a bridge to the AudioScheduler -nodes: | |
https://github.com/a1lazydog/ComfyUI-AudioScheduler | |
Transforms image based on the normalized amplitude. | |
""" | |
def amptransform(self, image, normalized_amp, zoom_scale, cumulative, x_offset, y_offset): | |
# Ensure normalized_amp is an array and within the range [0, 1] | |
normalized_amp = np.clip(normalized_amp, 0.0, 1.0) | |
transformed_images = [] | |
# Initialize the cumulative zoom factor | |
prev_amp = 0.0 | |
for i in range(image.shape[0]): | |
img = image[i] # Get the i-th image in the batch | |
amp = normalized_amp[i] # Get the corresponding amplitude value | |
# Incrementally increase the cumulative zoom factor | |
if cumulative: | |
prev_amp += amp | |
amp += prev_amp | |
# Convert the image tensor from BxHxWxC to CxHxW format expected by torchvision | |
img = img.permute(2, 0, 1) | |
# Convert PyTorch tensor to PIL Image for processing | |
pil_img = TF.to_pil_image(img) | |
# Calculate the crop size based on the amplitude | |
width, height = pil_img.size | |
crop_size = int(min(width, height) * (1 - amp * zoom_scale)) | |
crop_size = max(crop_size, 1) | |
# Calculate the crop box coordinates (centered crop) | |
left = (width - crop_size) // 2 | |
top = (height - crop_size) // 2 | |
right = (width + crop_size) // 2 | |
bottom = (height + crop_size) // 2 | |
# Crop and resize back to original size | |
cropped_img = TF.crop(pil_img, top, left, crop_size, crop_size) | |
resized_img = TF.resize(cropped_img, (height, width)) | |
# Convert back to tensor in CxHxW format | |
tensor_img = TF.to_tensor(resized_img) | |
# Convert the tensor back to BxHxWxC format | |
tensor_img = tensor_img.permute(1, 2, 0) | |
# Offset the image based on the amplitude | |
offset_amp = amp * 10 # Calculate the offset magnitude based on the amplitude | |
shift_x = min(x_offset * offset_amp, img.shape[1] - 1) # Calculate the shift in x direction | |
shift_y = min(y_offset * offset_amp, img.shape[0] - 1) # Calculate the shift in y direction | |
# Apply the offset to the image tensor | |
if shift_x != 0: | |
tensor_img = torch.roll(tensor_img, shifts=int(shift_x), dims=1) | |
if shift_y != 0: | |
tensor_img = torch.roll(tensor_img, shifts=int(shift_y), dims=0) | |
# Add to the list | |
transformed_images.append(tensor_img) | |
# Stack all transformed images into a batch | |
transformed_batch = torch.stack(transformed_images) | |
return (transformed_batch,) |