Spaces:
Sleeping
Sleeping
import torch | |
from ..log import log | |
class MTB_StackImages: | |
"""Stack the input images horizontally or vertically.""" | |
def INPUT_TYPES(cls): | |
return {"required": {"vertical": ("BOOLEAN", {"default": False})}} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "stack" | |
CATEGORY = "mtb/image utils" | |
def stack(self, vertical, **kwargs): | |
if not kwargs: | |
raise ValueError("At least one tensor must be provided.") | |
tensors = list(kwargs.values()) | |
log.debug( | |
f"Stacking {len(tensors)} tensors " | |
f"{'vertically' if vertical else 'horizontally'}" | |
) | |
normalized_tensors = [ | |
self.normalize_to_rgba(tensor) for tensor in tensors | |
] | |
max_batch_size = max(tensor.shape[0] for tensor in normalized_tensors) | |
normalized_tensors = [ | |
self.duplicate_frames(tensor, max_batch_size) | |
for tensor in normalized_tensors | |
] | |
if vertical: | |
width = normalized_tensors[0].shape[2] | |
if any(tensor.shape[2] != width for tensor in normalized_tensors): | |
raise ValueError( | |
"All tensors must have the same width " | |
"for vertical stacking." | |
) | |
dim = 1 | |
else: | |
height = normalized_tensors[0].shape[1] | |
if any(tensor.shape[1] != height for tensor in normalized_tensors): | |
raise ValueError( | |
"All tensors must have the same height " | |
"for horizontal stacking." | |
) | |
dim = 2 | |
stacked_tensor = torch.cat(normalized_tensors, dim=dim) | |
return (stacked_tensor,) | |
def normalize_to_rgba(self, tensor): | |
"""Normalize tensor to have 4 channels (RGBA).""" | |
_, _, _, channels = tensor.shape | |
# already RGBA | |
if channels == 4: | |
return tensor | |
# RGB to RGBA | |
elif channels == 3: | |
alpha_channel = torch.ones( | |
tensor.shape[:-1] + (1,), device=tensor.device | |
) # Add an alpha channel | |
return torch.cat((tensor, alpha_channel), dim=-1) | |
else: | |
raise ValueError( | |
"Tensor has an unsupported number of channels: " | |
"expected 3 (RGB) or 4 (RGBA)." | |
) | |
def duplicate_frames(self, tensor, target_batch_size): | |
"""Duplicate frames in tensor to match the target batch size.""" | |
current_batch_size = tensor.shape[0] | |
if current_batch_size < target_batch_size: | |
duplication_factors: int = target_batch_size // current_batch_size | |
duplicated_tensor = tensor.repeat(duplication_factors, 1, 1, 1) | |
remaining_frames = target_batch_size % current_batch_size | |
if remaining_frames > 0: | |
duplicated_tensor = torch.cat( | |
(duplicated_tensor, tensor[:remaining_frames]), dim=0 | |
) | |
return duplicated_tensor | |
else: | |
return tensor | |
class MTB_PickFromBatch: | |
"""Pick a specific number of images from a batch. | |
either from the start or end. | |
""" | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"from_direction": (["end", "start"], {"default": "start"}), | |
"count": ("INT", {"default": 1}), | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "pick_from_batch" | |
CATEGORY = "mtb/image utils" | |
def pick_from_batch(self, image, from_direction, count): | |
batch_size = image.size(0) | |
# Limit count to the available number of images in the batch | |
count = min(count, batch_size) | |
if count < batch_size: | |
log.warning( | |
f"Requested {count} images, " | |
f"but only {batch_size} are available." | |
) | |
if from_direction == "end": | |
selected_tensors = image[-count:] | |
else: | |
selected_tensors = image[:count] | |
return (selected_tensors,) | |
__nodes__ = [MTB_StackImages, MTB_PickFromBatch] | |