Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
import torch | |
from huggingface_hub import hf_hub_download | |
from ..utils import models_dir, np2tensor | |
# TODO: check if I can make a torch script device independant | |
# for now I forced it to use cuda. | |
class MTB_LoadVitMatteModel: | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"kind": (("Composition-1K", "Distinctions-646"),), | |
"autodownload": ("BOOLEAN", {"default": True}), | |
}, | |
} | |
RETURN_TYPES = ("VITMATTE_MODEL",) | |
RETURN_NAMES = ("torch_script",) | |
CATEGORY = "mtb/vitmatte" | |
FUNCTION = "execute" | |
def execute(self, *, kind: str, autodownload: bool): | |
dest = models_dir / "vitmatte" | |
dest.mkdir(exist_ok=True) | |
name = "dist" if kind == "Distinctions-646" else "com" | |
file = hf_hub_download( | |
repo_id="melmass/pytorch-scripts", | |
filename=f"vitmatte_b_{name}.pt", | |
local_dir=dest.as_posix(), | |
local_files_only=not autodownload, | |
) | |
model = torch.jit.load(file).to("cuda") | |
return (model,) | |
class MTB_GenerateTrimap: | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
# "image": ("IMAGE",), | |
"mask": ("MASK",), | |
"erode": ("INT", {"default": 10}), | |
"dilate": ("INT", {"default": 10}), | |
}, | |
} | |
RETURN_TYPES = ("IMAGE",) | |
RETURN_NAMES = ("trimap",) | |
CATEGORY = "mtb/vitmatte" | |
FUNCTION = "execute" | |
def execute( | |
self, | |
# image:torch.Tensor, | |
mask: torch.Tensor, | |
erode: int = 10, | |
dilate: int = 10, | |
): | |
# TODO: not sure what's the most practical between IMAGE or MASK | |
# image = image.to("cuda").half() | |
mask = mask.to("cuda").half() | |
trimaps = [] | |
for m in mask: | |
mask_arr = m.squeeze(0).to(torch.uint8).cpu().numpy() * 255 | |
erode_kernel = np.ones((erode, erode), np.uint8) | |
dilate_kernel = np.ones((dilate, dilate), np.uint8) | |
eroded = cv2.erode(mask_arr, erode_kernel, iterations=5) | |
dilated = cv2.dilate(mask_arr, dilate_kernel, iterations=5) | |
trimap = np.zeros_like(mask_arr) | |
trimap[dilated == 255] = 128 | |
trimap[eroded == 255] = 255 | |
trimaps.append(trimap) | |
return (np2tensor(trimaps),) | |
class MTB_ApplyVitMatte: | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"model": ("VITMATTE_MODEL",), | |
"image": ("IMAGE",), | |
"trimap": ("IMAGE",), | |
"returns": (("RGB", "RGBA"),), | |
}, | |
} | |
RETURN_TYPES = ("IMAGE", "MASK") | |
RETURN_NAMES = ("image (rgba)", "mask") | |
CATEGORY = "mtb/utils" | |
FUNCTION = "execute" | |
def execute( | |
self, model, image: torch.Tensor, trimap: torch.Tensor, returns: str | |
): | |
im_count = image.shape[0] | |
tm_count = trimap.shape[0] | |
if im_count != tm_count: | |
raise ValueError("image and trimap must have the same batch size") | |
outputs_m: list[torch.Tensor] = [] | |
outputs_i: list[torch.Tensor] = [] | |
for i, im in enumerate(image): | |
tm = trimap[i].half().unsqueeze(2).permute(2, 0, 1).to("cuda") | |
im = im.half().permute(2, 0, 1).to("cuda") | |
inputs = {"image": im.unsqueeze(0), "trimap": tm.unsqueeze(0)} | |
fine_mask = model(inputs) | |
foreground = im * fine_mask + (1 - fine_mask) | |
if returns == "RGBA": | |
rgba_image = torch.cat( | |
(foreground, fine_mask.unsqueeze(0)), dim=0 | |
) | |
outputs_i.append(rgba_image.unsqueeze(0)) | |
else: | |
outputs_i.append(foreground.unsqueeze(0)) | |
outputs_m.append(fine_mask.unsqueeze(0)) | |
result_m = torch.cat(outputs_m, dim=0) | |
result_i = torch.cat(outputs_i, dim=0) | |
return (result_i.permute(0, 2, 3, 1), result_m) | |
__nodes__ = [MTB_LoadVitMatteModel, MTB_GenerateTrimap, MTB_ApplyVitMatte] | |