Spaces:
Running
on
Zero
Running
on
Zero
from .utils import max_, min_ | |
from nodes import MAX_RESOLUTION | |
import comfy.utils | |
from nodes import SaveImage | |
from node_helpers import pillow | |
from PIL import Image, ImageOps | |
import kornia | |
import torch | |
import torch.nn.functional as F | |
import torchvision.transforms.v2 as T | |
#import warnings | |
#warnings.filterwarnings('ignore', module="torchvision") | |
import math | |
import os | |
import numpy as np | |
import folder_paths | |
from pathlib import Path | |
import random | |
""" | |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
Image analysis | |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
""" | |
class ImageEnhanceDifference: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image1": ("IMAGE",), | |
"image2": ("IMAGE",), | |
"exponent": ("FLOAT", { "default": 0.75, "min": 0.00, "max": 1.00, "step": 0.05, }), | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image analysis" | |
def execute(self, image1, image2, exponent): | |
if image1.shape[1:] != image2.shape[1:]: | |
image2 = comfy.utils.common_upscale(image2.permute([0,3,1,2]), image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center').permute([0,2,3,1]) | |
diff_image = image1 - image2 | |
diff_image = torch.pow(diff_image, exponent) | |
diff_image = torch.clamp(diff_image, 0, 1) | |
return(diff_image,) | |
""" | |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
Batch tools | |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
""" | |
class ImageBatchMultiple: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image_1": ("IMAGE",), | |
"method": (["nearest-exact", "bilinear", "area", "bicubic", "lanczos"], { "default": "lanczos" }), | |
}, "optional": { | |
"image_2": ("IMAGE",), | |
"image_3": ("IMAGE",), | |
"image_4": ("IMAGE",), | |
"image_5": ("IMAGE",), | |
}, | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image batch" | |
def execute(self, image_1, method, image_2=None, image_3=None, image_4=None, image_5=None): | |
out = image_1 | |
if image_2 is not None: | |
if image_1.shape[1:] != image_2.shape[1:]: | |
image_2 = comfy.utils.common_upscale(image_2.movedim(-1,1), image_1.shape[2], image_1.shape[1], method, "center").movedim(1,-1) | |
out = torch.cat((image_1, image_2), dim=0) | |
if image_3 is not None: | |
if image_1.shape[1:] != image_3.shape[1:]: | |
image_3 = comfy.utils.common_upscale(image_3.movedim(-1,1), image_1.shape[2], image_1.shape[1], method, "center").movedim(1,-1) | |
out = torch.cat((out, image_3), dim=0) | |
if image_4 is not None: | |
if image_1.shape[1:] != image_4.shape[1:]: | |
image_4 = comfy.utils.common_upscale(image_4.movedim(-1,1), image_1.shape[2], image_1.shape[1], method, "center").movedim(1,-1) | |
out = torch.cat((out, image_4), dim=0) | |
if image_5 is not None: | |
if image_1.shape[1:] != image_5.shape[1:]: | |
image_5 = comfy.utils.common_upscale(image_5.movedim(-1,1), image_1.shape[2], image_1.shape[1], method, "center").movedim(1,-1) | |
out = torch.cat((out, image_5), dim=0) | |
return (out,) | |
class ImageExpandBatch: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"size": ("INT", { "default": 16, "min": 1, "step": 1, }), | |
"method": (["expand", "repeat all", "repeat first", "repeat last"],) | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image batch" | |
def execute(self, image, size, method): | |
orig_size = image.shape[0] | |
if orig_size == size: | |
return (image,) | |
if size <= 1: | |
return (image[:size],) | |
if 'expand' in method: | |
out = torch.empty([size] + list(image.shape)[1:], dtype=image.dtype, device=image.device) | |
if size < orig_size: | |
scale = (orig_size - 1) / (size - 1) | |
for i in range(size): | |
out[i] = image[min(round(i * scale), orig_size - 1)] | |
else: | |
scale = orig_size / size | |
for i in range(size): | |
out[i] = image[min(math.floor((i + 0.5) * scale), orig_size - 1)] | |
elif 'all' in method: | |
out = image.repeat([math.ceil(size / image.shape[0])] + [1] * (len(image.shape) - 1))[:size] | |
elif 'first' in method: | |
if size < image.shape[0]: | |
out = image[:size] | |
else: | |
out = torch.cat([image[:1].repeat(size-image.shape[0], 1, 1, 1), image], dim=0) | |
elif 'last' in method: | |
if size < image.shape[0]: | |
out = image[:size] | |
else: | |
out = torch.cat((image, image[-1:].repeat((size-image.shape[0], 1, 1, 1))), dim=0) | |
return (out,) | |
class ImageFromBatch: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE", ), | |
"start": ("INT", { "default": 0, "min": 0, "step": 1, }), | |
"length": ("INT", { "default": -1, "min": -1, "step": 1, }), | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image batch" | |
def execute(self, image, start, length): | |
if length<0: | |
length = image.shape[0] | |
start = min(start, image.shape[0]-1) | |
length = min(image.shape[0]-start, length) | |
return (image[start:start + length], ) | |
class ImageListToBatch: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "execute" | |
INPUT_IS_LIST = True | |
CATEGORY = "essentials/image batch" | |
def execute(self, image): | |
shape = image[0].shape[1:3] | |
out = [] | |
for i in range(len(image)): | |
img = image[i] | |
if image[i].shape[1:3] != shape: | |
img = comfy.utils.common_upscale(img.permute([0,3,1,2]), shape[1], shape[0], upscale_method='bicubic', crop='center').permute([0,2,3,1]) | |
out.append(img) | |
out = torch.cat(out, dim=0) | |
return (out,) | |
class ImageBatchToList: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
OUTPUT_IS_LIST = (True,) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image batch" | |
def execute(self, image): | |
return ([image[i].unsqueeze(0) for i in range(image.shape[0])], ) | |
""" | |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
Image manipulation | |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
""" | |
class ImageCompositeFromMaskBatch: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image_from": ("IMAGE", ), | |
"image_to": ("IMAGE", ), | |
"mask": ("MASK", ) | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image manipulation" | |
def execute(self, image_from, image_to, mask): | |
frames = mask.shape[0] | |
if image_from.shape[1] != image_to.shape[1] or image_from.shape[2] != image_to.shape[2]: | |
image_to = comfy.utils.common_upscale(image_to.permute([0,3,1,2]), image_from.shape[2], image_from.shape[1], upscale_method='bicubic', crop='center').permute([0,2,3,1]) | |
if frames < image_from.shape[0]: | |
image_from = image_from[:frames] | |
elif frames > image_from.shape[0]: | |
image_from = torch.cat((image_from, image_from[-1].unsqueeze(0).repeat(frames-image_from.shape[0], 1, 1, 1)), dim=0) | |
mask = mask.unsqueeze(3).repeat(1, 1, 1, 3) | |
if image_from.shape[1] != mask.shape[1] or image_from.shape[2] != mask.shape[2]: | |
mask = comfy.utils.common_upscale(mask.permute([0,3,1,2]), image_from.shape[2], image_from.shape[1], upscale_method='bicubic', crop='center').permute([0,2,3,1]) | |
out = mask * image_to + (1 - mask) * image_from | |
return (out, ) | |
class ImageComposite: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"destination": ("IMAGE",), | |
"source": ("IMAGE",), | |
"x": ("INT", { "default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1 }), | |
"y": ("INT", { "default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1 }), | |
"offset_x": ("INT", { "default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1 }), | |
"offset_y": ("INT", { "default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1 }), | |
}, | |
"optional": { | |
"mask": ("MASK",), | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image manipulation" | |
def execute(self, destination, source, x, y, offset_x, offset_y, mask=None): | |
if mask is None: | |
mask = torch.ones_like(source)[:,:,:,0] | |
mask = mask.unsqueeze(-1).repeat(1, 1, 1, 3) | |
if mask.shape[1:3] != source.shape[1:3]: | |
mask = F.interpolate(mask.permute([0, 3, 1, 2]), size=(source.shape[1], source.shape[2]), mode='bicubic') | |
mask = mask.permute([0, 2, 3, 1]) | |
if mask.shape[0] > source.shape[0]: | |
mask = mask[:source.shape[0]] | |
elif mask.shape[0] < source.shape[0]: | |
mask = torch.cat((mask, mask[-1:].repeat((source.shape[0]-mask.shape[0], 1, 1, 1))), dim=0) | |
if destination.shape[0] > source.shape[0]: | |
destination = destination[:source.shape[0]] | |
elif destination.shape[0] < source.shape[0]: | |
destination = torch.cat((destination, destination[-1:].repeat((source.shape[0]-destination.shape[0], 1, 1, 1))), dim=0) | |
if not isinstance(x, list): | |
x = [x] | |
if not isinstance(y, list): | |
y = [y] | |
if len(x) < destination.shape[0]: | |
x = x + [x[-1]] * (destination.shape[0] - len(x)) | |
if len(y) < destination.shape[0]: | |
y = y + [y[-1]] * (destination.shape[0] - len(y)) | |
x = [i + offset_x for i in x] | |
y = [i + offset_y for i in y] | |
output = [] | |
for i in range(destination.shape[0]): | |
d = destination[i].clone() | |
s = source[i] | |
m = mask[i] | |
if x[i]+source.shape[2] > destination.shape[2]: | |
s = s[:, :, :destination.shape[2]-x[i], :] | |
m = m[:, :, :destination.shape[2]-x[i], :] | |
if y[i]+source.shape[1] > destination.shape[1]: | |
s = s[:, :destination.shape[1]-y[i], :, :] | |
m = m[:destination.shape[1]-y[i], :, :] | |
#output.append(s * m + d[y[i]:y[i]+s.shape[0], x[i]:x[i]+s.shape[1], :] * (1 - m)) | |
d[y[i]:y[i]+s.shape[0], x[i]:x[i]+s.shape[1], :] = s * m + d[y[i]:y[i]+s.shape[0], x[i]:x[i]+s.shape[1], :] * (1 - m) | |
output.append(d) | |
output = torch.stack(output) | |
# apply the source to the destination at XY position using the mask | |
#for i in range(destination.shape[0]): | |
# output[i, y[i]:y[i]+source.shape[1], x[i]:x[i]+source.shape[2], :] = source * mask + destination[i, y[i]:y[i]+source.shape[1], x[i]:x[i]+source.shape[2], :] * (1 - mask) | |
#for x_, y_ in zip(x, y): | |
# output[:, y_:y_+source.shape[1], x_:x_+source.shape[2], :] = source * mask + destination[:, y_:y_+source.shape[1], x_:x_+source.shape[2], :] * (1 - mask) | |
#output[:, y:y+source.shape[1], x:x+source.shape[2], :] = source * mask + destination[:, y:y+source.shape[1], x:x+source.shape[2], :] * (1 - mask) | |
#output = destination * (1 - mask) + source * mask | |
return (output,) | |
class ImageResize: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1, }), | |
"height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1, }), | |
"interpolation": (["nearest", "bilinear", "bicubic", "area", "nearest-exact", "lanczos"],), | |
"method": (["stretch", "keep proportion", "fill / crop", "pad"],), | |
"condition": (["always", "downscale if bigger", "upscale if smaller", "if bigger area", "if smaller area"],), | |
"multiple_of": ("INT", { "default": 0, "min": 0, "max": 512, "step": 1, }), | |
} | |
} | |
RETURN_TYPES = ("IMAGE", "INT", "INT",) | |
RETURN_NAMES = ("IMAGE", "width", "height",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image manipulation" | |
def execute(self, image, width, height, method="stretch", interpolation="nearest", condition="always", multiple_of=0, keep_proportion=False): | |
_, oh, ow, _ = image.shape | |
x = y = x2 = y2 = 0 | |
pad_left = pad_right = pad_top = pad_bottom = 0 | |
if keep_proportion: | |
method = "keep proportion" | |
if multiple_of > 1: | |
width = width - (width % multiple_of) | |
height = height - (height % multiple_of) | |
if method == 'keep proportion' or method == 'pad': | |
if width == 0 and oh < height: | |
width = MAX_RESOLUTION | |
elif width == 0 and oh >= height: | |
width = ow | |
if height == 0 and ow < width: | |
height = MAX_RESOLUTION | |
elif height == 0 and ow >= width: | |
height = oh | |
ratio = min(width / ow, height / oh) | |
new_width = round(ow*ratio) | |
new_height = round(oh*ratio) | |
if method == 'pad': | |
pad_left = (width - new_width) // 2 | |
pad_right = width - new_width - pad_left | |
pad_top = (height - new_height) // 2 | |
pad_bottom = height - new_height - pad_top | |
width = new_width | |
height = new_height | |
elif method.startswith('fill'): | |
width = width if width > 0 else ow | |
height = height if height > 0 else oh | |
ratio = max(width / ow, height / oh) | |
new_width = round(ow*ratio) | |
new_height = round(oh*ratio) | |
x = (new_width - width) // 2 | |
y = (new_height - height) // 2 | |
x2 = x + width | |
y2 = y + height | |
if x2 > new_width: | |
x -= (x2 - new_width) | |
if x < 0: | |
x = 0 | |
if y2 > new_height: | |
y -= (y2 - new_height) | |
if y < 0: | |
y = 0 | |
width = new_width | |
height = new_height | |
else: | |
width = width if width > 0 else ow | |
height = height if height > 0 else oh | |
if "always" in condition \ | |
or ("downscale if bigger" == condition and (oh > height or ow > width)) or ("upscale if smaller" == condition and (oh < height or ow < width)) \ | |
or ("bigger area" in condition and (oh * ow > height * width)) or ("smaller area" in condition and (oh * ow < height * width)): | |
outputs = image.permute(0,3,1,2) | |
if interpolation == "lanczos": | |
outputs = comfy.utils.lanczos(outputs, width, height) | |
else: | |
outputs = F.interpolate(outputs, size=(height, width), mode=interpolation) | |
if method == 'pad': | |
if pad_left > 0 or pad_right > 0 or pad_top > 0 or pad_bottom > 0: | |
outputs = F.pad(outputs, (pad_left, pad_right, pad_top, pad_bottom), value=0) | |
outputs = outputs.permute(0,2,3,1) | |
if method.startswith('fill'): | |
if x > 0 or y > 0 or x2 > 0 or y2 > 0: | |
outputs = outputs[:, y:y2, x:x2, :] | |
else: | |
outputs = image | |
if multiple_of > 1 and (outputs.shape[2] % multiple_of != 0 or outputs.shape[1] % multiple_of != 0): | |
width = outputs.shape[2] | |
height = outputs.shape[1] | |
x = (width % multiple_of) // 2 | |
y = (height % multiple_of) // 2 | |
x2 = width - ((width % multiple_of) - x) | |
y2 = height - ((height % multiple_of) - y) | |
outputs = outputs[:, y:y2, x:x2, :] | |
outputs = torch.clamp(outputs, 0, 1) | |
return(outputs, outputs.shape[2], outputs.shape[1],) | |
class ImageFlip: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"axis": (["x", "y", "xy"],), | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image manipulation" | |
def execute(self, image, axis): | |
dim = () | |
if "y" in axis: | |
dim += (1,) | |
if "x" in axis: | |
dim += (2,) | |
image = torch.flip(image, dim) | |
return(image,) | |
class ImageCrop: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"width": ("INT", { "default": 256, "min": 0, "max": MAX_RESOLUTION, "step": 8, }), | |
"height": ("INT", { "default": 256, "min": 0, "max": MAX_RESOLUTION, "step": 8, }), | |
"position": (["top-left", "top-center", "top-right", "right-center", "bottom-right", "bottom-center", "bottom-left", "left-center", "center"],), | |
"x_offset": ("INT", { "default": 0, "min": -99999, "step": 1, }), | |
"y_offset": ("INT", { "default": 0, "min": -99999, "step": 1, }), | |
} | |
} | |
RETURN_TYPES = ("IMAGE","INT","INT",) | |
RETURN_NAMES = ("IMAGE","x","y",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image manipulation" | |
def execute(self, image, width, height, position, x_offset, y_offset): | |
_, oh, ow, _ = image.shape | |
width = min(ow, width) | |
height = min(oh, height) | |
if "center" in position: | |
x = round((ow-width) / 2) | |
y = round((oh-height) / 2) | |
if "top" in position: | |
y = 0 | |
if "bottom" in position: | |
y = oh-height | |
if "left" in position: | |
x = 0 | |
if "right" in position: | |
x = ow-width | |
x += x_offset | |
y += y_offset | |
x2 = x+width | |
y2 = y+height | |
if x2 > ow: | |
x2 = ow | |
if x < 0: | |
x = 0 | |
if y2 > oh: | |
y2 = oh | |
if y < 0: | |
y = 0 | |
image = image[:, y:y2, x:x2, :] | |
return(image, x, y, ) | |
class ImageTile: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"rows": ("INT", { "default": 2, "min": 1, "max": 256, "step": 1, }), | |
"cols": ("INT", { "default": 2, "min": 1, "max": 256, "step": 1, }), | |
"overlap": ("FLOAT", { "default": 0, "min": 0, "max": 0.5, "step": 0.01, }), | |
"overlap_x": ("INT", { "default": 0, "min": 0, "max": MAX_RESOLUTION//2, "step": 1, }), | |
"overlap_y": ("INT", { "default": 0, "min": 0, "max": MAX_RESOLUTION//2, "step": 1, }), | |
} | |
} | |
RETURN_TYPES = ("IMAGE", "INT", "INT", "INT", "INT") | |
RETURN_NAMES = ("IMAGE", "tile_width", "tile_height", "overlap_x", "overlap_y",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image manipulation" | |
def execute(self, image, rows, cols, overlap, overlap_x, overlap_y): | |
h, w = image.shape[1:3] | |
tile_h = h // rows | |
tile_w = w // cols | |
h = tile_h * rows | |
w = tile_w * cols | |
overlap_h = int(tile_h * overlap) + overlap_y | |
overlap_w = int(tile_w * overlap) + overlap_x | |
# max overlap is half of the tile size | |
overlap_h = min(tile_h // 2, overlap_h) | |
overlap_w = min(tile_w // 2, overlap_w) | |
if rows == 1: | |
overlap_h = 0 | |
if cols == 1: | |
overlap_w = 0 | |
tiles = [] | |
for i in range(rows): | |
for j in range(cols): | |
y1 = i * tile_h | |
x1 = j * tile_w | |
if i > 0: | |
y1 -= overlap_h | |
if j > 0: | |
x1 -= overlap_w | |
y2 = y1 + tile_h + overlap_h | |
x2 = x1 + tile_w + overlap_w | |
if y2 > h: | |
y2 = h | |
y1 = y2 - tile_h - overlap_h | |
if x2 > w: | |
x2 = w | |
x1 = x2 - tile_w - overlap_w | |
tiles.append(image[:, y1:y2, x1:x2, :]) | |
tiles = torch.cat(tiles, dim=0) | |
return(tiles, tile_w+overlap_w, tile_h+overlap_h, overlap_w, overlap_h,) | |
class ImageUntile: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"tiles": ("IMAGE",), | |
"overlap_x": ("INT", { "default": 0, "min": 0, "max": MAX_RESOLUTION//2, "step": 1, }), | |
"overlap_y": ("INT", { "default": 0, "min": 0, "max": MAX_RESOLUTION//2, "step": 1, }), | |
"rows": ("INT", { "default": 2, "min": 1, "max": 256, "step": 1, }), | |
"cols": ("INT", { "default": 2, "min": 1, "max": 256, "step": 1, }), | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image manipulation" | |
def execute(self, tiles, overlap_x, overlap_y, rows, cols): | |
tile_h, tile_w = tiles.shape[1:3] | |
tile_h -= overlap_y | |
tile_w -= overlap_x | |
out_w = cols * tile_w | |
out_h = rows * tile_h | |
out = torch.zeros((1, out_h, out_w, tiles.shape[3]), device=tiles.device, dtype=tiles.dtype) | |
for i in range(rows): | |
for j in range(cols): | |
y1 = i * tile_h | |
x1 = j * tile_w | |
if i > 0: | |
y1 -= overlap_y | |
if j > 0: | |
x1 -= overlap_x | |
y2 = y1 + tile_h + overlap_y | |
x2 = x1 + tile_w + overlap_x | |
if y2 > out_h: | |
y2 = out_h | |
y1 = y2 - tile_h - overlap_y | |
if x2 > out_w: | |
x2 = out_w | |
x1 = x2 - tile_w - overlap_x | |
mask = torch.ones((1, tile_h+overlap_y, tile_w+overlap_x), device=tiles.device, dtype=tiles.dtype) | |
# feather the overlap on top | |
if i > 0 and overlap_y > 0: | |
mask[:, :overlap_y, :] *= torch.linspace(0, 1, overlap_y, device=tiles.device, dtype=tiles.dtype).unsqueeze(1) | |
# feather the overlap on bottom | |
#if i < rows - 1: | |
# mask[:, -overlap_y:, :] *= torch.linspace(1, 0, overlap_y, device=tiles.device, dtype=tiles.dtype).unsqueeze(1) | |
# feather the overlap on left | |
if j > 0 and overlap_x > 0: | |
mask[:, :, :overlap_x] *= torch.linspace(0, 1, overlap_x, device=tiles.device, dtype=tiles.dtype).unsqueeze(0) | |
# feather the overlap on right | |
#if j < cols - 1: | |
# mask[:, :, -overlap_x:] *= torch.linspace(1, 0, overlap_x, device=tiles.device, dtype=tiles.dtype).unsqueeze(0) | |
mask = mask.unsqueeze(-1).repeat(1, 1, 1, tiles.shape[3]) | |
tile = tiles[i * cols + j] * mask | |
out[:, y1:y2, x1:x2, :] = out[:, y1:y2, x1:x2, :] * (1 - mask) + tile | |
return(out, ) | |
class ImageSeamCarving: | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"width": ("INT", { "default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1, }), | |
"height": ("INT", { "default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1, }), | |
"energy": (["backward", "forward"],), | |
"order": (["width-first", "height-first"],), | |
}, | |
"optional": { | |
"keep_mask": ("MASK",), | |
"drop_mask": ("MASK",), | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
CATEGORY = "essentials/image manipulation" | |
FUNCTION = "execute" | |
def execute(self, image, width, height, energy, order, keep_mask=None, drop_mask=None): | |
from .carve import seam_carving | |
img = image.permute([0, 3, 1, 2]) | |
if keep_mask is not None: | |
#keep_mask = keep_mask.reshape((-1, 1, keep_mask.shape[-2], keep_mask.shape[-1])).movedim(1, -1) | |
keep_mask = keep_mask.unsqueeze(1) | |
if keep_mask.shape[2] != img.shape[2] or keep_mask.shape[3] != img.shape[3]: | |
keep_mask = F.interpolate(keep_mask, size=(img.shape[2], img.shape[3]), mode="bilinear") | |
if drop_mask is not None: | |
drop_mask = drop_mask.unsqueeze(1) | |
if drop_mask.shape[2] != img.shape[2] or drop_mask.shape[3] != img.shape[3]: | |
drop_mask = F.interpolate(drop_mask, size=(img.shape[2], img.shape[3]), mode="bilinear") | |
out = [] | |
for i in range(img.shape[0]): | |
resized = seam_carving( | |
T.ToPILImage()(img[i]), | |
size=(width, height), | |
energy_mode=energy, | |
order=order, | |
keep_mask=T.ToPILImage()(keep_mask[i]) if keep_mask is not None else None, | |
drop_mask=T.ToPILImage()(drop_mask[i]) if drop_mask is not None else None, | |
) | |
out.append(T.ToTensor()(resized)) | |
out = torch.stack(out).permute([0, 2, 3, 1]) | |
return(out, ) | |
class ImageRandomTransform: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), | |
"repeat": ("INT", { "default": 1, "min": 1, "max": 256, "step": 1, }), | |
"variation": ("FLOAT", { "default": 0.1, "min": 0.0, "max": 1.0, "step": 0.05, }), | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image manipulation" | |
def execute(self, image, seed, repeat, variation): | |
h, w = image.shape[1:3] | |
image = image.repeat(repeat, 1, 1, 1).permute([0, 3, 1, 2]) | |
distortion = 0.2 * variation | |
rotation = 5 * variation | |
brightness = 0.5 * variation | |
contrast = 0.5 * variation | |
saturation = 0.5 * variation | |
hue = 0.2 * variation | |
scale = 0.5 * variation | |
torch.manual_seed(seed) | |
out = [] | |
for i in image: | |
tramsforms = T.Compose([ | |
T.RandomPerspective(distortion_scale=distortion, p=0.5), | |
T.RandomRotation(degrees=rotation, interpolation=T.InterpolationMode.BILINEAR, expand=True), | |
T.ColorJitter(brightness=brightness, contrast=contrast, saturation=saturation, hue=(-hue, hue)), | |
T.RandomHorizontalFlip(p=0.5), | |
T.RandomResizedCrop((h, w), scale=(1-scale, 1+scale), ratio=(w/h, w/h), interpolation=T.InterpolationMode.BICUBIC), | |
]) | |
out.append(tramsforms(i.unsqueeze(0))) | |
out = torch.cat(out, dim=0).permute([0, 2, 3, 1]).clamp(0, 1) | |
return (out,) | |
class RemBGSession: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"model": (["u2net: general purpose", "u2netp: lightweight general purpose", "u2net_human_seg: human segmentation", "u2net_cloth_seg: cloths Parsing", "silueta: very small u2net", "isnet-general-use: general purpose", "isnet-anime: anime illustrations", "sam: general purpose"],), | |
"providers": (['CPU', 'CUDA', 'ROCM', 'DirectML', 'OpenVINO', 'CoreML', 'Tensorrt', 'Azure'],), | |
}, | |
} | |
RETURN_TYPES = ("REMBG_SESSION",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image manipulation" | |
def execute(self, model, providers): | |
from rembg import new_session, remove | |
model = model.split(":")[0] | |
class Session: | |
def __init__(self, model, providers): | |
self.session = new_session(model, providers=[providers+"ExecutionProvider"]) | |
def process(self, image): | |
return remove(image, session=self.session) | |
return (Session(model, providers),) | |
class TransparentBGSession: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"mode": (["base", "fast", "base-nightly"],), | |
"use_jit": ("BOOLEAN", { "default": True }), | |
}, | |
} | |
RETURN_TYPES = ("REMBG_SESSION",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image manipulation" | |
def execute(self, mode, use_jit): | |
from transparent_background import Remover | |
class Session: | |
def __init__(self, mode, use_jit): | |
self.session = Remover(mode=mode, jit=use_jit) | |
def process(self, image): | |
return self.session.process(image) | |
return (Session(mode, use_jit),) | |
class ImageRemoveBackground: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"rembg_session": ("REMBG_SESSION",), | |
"image": ("IMAGE",), | |
}, | |
} | |
RETURN_TYPES = ("IMAGE", "MASK",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image manipulation" | |
def execute(self, rembg_session, image): | |
image = image.permute([0, 3, 1, 2]) | |
output = [] | |
for img in image: | |
img = T.ToPILImage()(img) | |
img = rembg_session.process(img) | |
output.append(T.ToTensor()(img)) | |
output = torch.stack(output, dim=0) | |
output = output.permute([0, 2, 3, 1]) | |
mask = output[:, :, :, 3] if output.shape[3] == 4 else torch.ones_like(output[:, :, :, 0]) | |
# output = output[:, :, :, :3] | |
return(output, mask,) | |
""" | |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
Image processing | |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
""" | |
class ImageDesaturate: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"factor": ("FLOAT", { "default": 1.00, "min": 0.00, "max": 1.00, "step": 0.05, }), | |
"method": (["luminance (Rec.709)", "luminance (Rec.601)", "average", "lightness"],), | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image processing" | |
def execute(self, image, factor, method): | |
if method == "luminance (Rec.709)": | |
grayscale = 0.2126 * image[..., 0] + 0.7152 * image[..., 1] + 0.0722 * image[..., 2] | |
elif method == "luminance (Rec.601)": | |
grayscale = 0.299 * image[..., 0] + 0.587 * image[..., 1] + 0.114 * image[..., 2] | |
elif method == "average": | |
grayscale = image.mean(dim=3) | |
elif method == "lightness": | |
grayscale = (torch.max(image, dim=3)[0] + torch.min(image, dim=3)[0]) / 2 | |
grayscale = (1.0 - factor) * image + factor * grayscale.unsqueeze(-1).repeat(1, 1, 1, 3) | |
grayscale = torch.clamp(grayscale, 0, 1) | |
return(grayscale,) | |
class PixelOEPixelize: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"downscale_mode": (["contrast", "bicubic", "nearest", "center", "k-centroid"],), | |
"target_size": ("INT", { "default": 128, "min": 0, "max": MAX_RESOLUTION, "step": 8 }), | |
"patch_size": ("INT", { "default": 16, "min": 4, "max": 32, "step": 2 }), | |
"thickness": ("INT", { "default": 2, "min": 1, "max": 16, "step": 1 }), | |
"color_matching": ("BOOLEAN", { "default": True }), | |
"upscale": ("BOOLEAN", { "default": True }), | |
#"contrast": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 100.0, "step": 0.1 }), | |
#"saturation": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 100.0, "step": 0.1 }), | |
}, | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image processing" | |
def execute(self, image, downscale_mode, target_size, patch_size, thickness, color_matching, upscale): | |
from pixeloe.pixelize import pixelize | |
image = image.clone().mul(255).clamp(0, 255).byte().cpu().numpy() | |
output = [] | |
for img in image: | |
img = pixelize(img, | |
mode=downscale_mode, | |
target_size=target_size, | |
patch_size=patch_size, | |
thickness=thickness, | |
contrast=1.0, | |
saturation=1.0, | |
color_matching=color_matching, | |
no_upscale=not upscale) | |
output.append(T.ToTensor()(img)) | |
output = torch.stack(output, dim=0).permute([0, 2, 3, 1]) | |
return(output,) | |
class ImagePosterize: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"threshold": ("FLOAT", { "default": 0.50, "min": 0.00, "max": 1.00, "step": 0.05, }), | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image processing" | |
def execute(self, image, threshold): | |
image = image.mean(dim=3, keepdim=True) | |
image = (image > threshold).float() | |
image = image.repeat(1, 1, 1, 3) | |
return(image,) | |
# From https://github.com/yoonsikp/pycubelut/blob/master/pycubelut.py (MIT license) | |
class ImageApplyLUT: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"lut_file": (folder_paths.get_filename_list("luts"),), | |
"gamma_correction": ("BOOLEAN", { "default": True }), | |
"clip_values": ("BOOLEAN", { "default": True }), | |
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.1 }), | |
}} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image processing" | |
# TODO: check if we can do without numpy | |
def execute(self, image, lut_file, gamma_correction, clip_values, strength): | |
lut_file_path = folder_paths.get_full_path("luts", lut_file) | |
if not lut_file_path or not Path(lut_file_path).exists(): | |
print(f"Could not find LUT file: {lut_file_path}") | |
return (image,) | |
from colour.io.luts.iridas_cube import read_LUT_IridasCube | |
device = image.device | |
lut = read_LUT_IridasCube(lut_file_path) | |
lut.name = lut_file | |
if clip_values: | |
if lut.domain[0].max() == lut.domain[0].min() and lut.domain[1].max() == lut.domain[1].min(): | |
lut.table = np.clip(lut.table, lut.domain[0, 0], lut.domain[1, 0]) | |
else: | |
if len(lut.table.shape) == 2: # 3x1D | |
for dim in range(3): | |
lut.table[:, dim] = np.clip(lut.table[:, dim], lut.domain[0, dim], lut.domain[1, dim]) | |
else: # 3D | |
for dim in range(3): | |
lut.table[:, :, :, dim] = np.clip(lut.table[:, :, :, dim], lut.domain[0, dim], lut.domain[1, dim]) | |
out = [] | |
for img in image: # TODO: is this more resource efficient? should we use a batch instead? | |
lut_img = img.cpu().numpy().copy() | |
is_non_default_domain = not np.array_equal(lut.domain, np.array([[0., 0., 0.], [1., 1., 1.]])) | |
dom_scale = None | |
if is_non_default_domain: | |
dom_scale = lut.domain[1] - lut.domain[0] | |
lut_img = lut_img * dom_scale + lut.domain[0] | |
if gamma_correction: | |
lut_img = lut_img ** (1/2.2) | |
lut_img = lut.apply(lut_img) | |
if gamma_correction: | |
lut_img = lut_img ** (2.2) | |
if is_non_default_domain: | |
lut_img = (lut_img - lut.domain[0]) / dom_scale | |
lut_img = torch.from_numpy(lut_img).to(device) | |
if strength < 1.0: | |
lut_img = strength * lut_img + (1 - strength) * img | |
out.append(lut_img) | |
out = torch.stack(out) | |
return (out, ) | |
# From https://github.com/Jamy-L/Pytorch-Contrast-Adaptive-Sharpening/ | |
class ImageCAS: | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"amount": ("FLOAT", {"default": 0.8, "min": 0, "max": 1, "step": 0.05}), | |
}, | |
} | |
RETURN_TYPES = ("IMAGE",) | |
CATEGORY = "essentials/image processing" | |
FUNCTION = "execute" | |
def execute(self, image, amount): | |
epsilon = 1e-5 | |
img = F.pad(image.permute([0,3,1,2]), pad=(1, 1, 1, 1)) | |
a = img[..., :-2, :-2] | |
b = img[..., :-2, 1:-1] | |
c = img[..., :-2, 2:] | |
d = img[..., 1:-1, :-2] | |
e = img[..., 1:-1, 1:-1] | |
f = img[..., 1:-1, 2:] | |
g = img[..., 2:, :-2] | |
h = img[..., 2:, 1:-1] | |
i = img[..., 2:, 2:] | |
# Computing contrast | |
cross = (b, d, e, f, h) | |
mn = min_(cross) | |
mx = max_(cross) | |
diag = (a, c, g, i) | |
mn2 = min_(diag) | |
mx2 = max_(diag) | |
mx = mx + mx2 | |
mn = mn + mn2 | |
# Computing local weight | |
inv_mx = torch.reciprocal(mx + epsilon) | |
amp = inv_mx * torch.minimum(mn, (2 - mx)) | |
# scaling | |
amp = torch.sqrt(amp) | |
w = - amp * (amount * (1/5 - 1/8) + 1/8) | |
div = torch.reciprocal(1 + 4*w) | |
output = ((b + d + f + h)*w + e) * div | |
output = output.clamp(0, 1) | |
#output = torch.nan_to_num(output) | |
output = output.permute([0,2,3,1]) | |
return (output,) | |
class ImageSmartSharpen: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"noise_radius": ("INT", { "default": 7, "min": 1, "max": 25, "step": 1, }), | |
"preserve_edges": ("FLOAT", { "default": 0.75, "min": 0.0, "max": 1.0, "step": 0.05 }), | |
"sharpen": ("FLOAT", { "default": 5.0, "min": 0.0, "max": 25.0, "step": 0.5 }), | |
"ratio": ("FLOAT", { "default": 0.5, "min": 0.0, "max": 1.0, "step": 0.1 }), | |
}} | |
RETURN_TYPES = ("IMAGE",) | |
CATEGORY = "essentials/image processing" | |
FUNCTION = "execute" | |
def execute(self, image, noise_radius, preserve_edges, sharpen, ratio): | |
import cv2 | |
output = [] | |
#diagonal = np.sqrt(image.shape[1]**2 + image.shape[2]**2) | |
if preserve_edges > 0: | |
preserve_edges = max(1 - preserve_edges, 0.05) | |
for img in image: | |
if noise_radius > 1: | |
sigma = 0.3 * ((noise_radius - 1) * 0.5 - 1) + 0.8 # this is what pytorch uses for blur | |
#sigma_color = preserve_edges * (diagonal / 2048) | |
blurred = cv2.bilateralFilter(img.cpu().numpy(), noise_radius, preserve_edges, sigma) | |
blurred = torch.from_numpy(blurred) | |
else: | |
blurred = img | |
if sharpen > 0: | |
sharpened = kornia.enhance.sharpness(img.permute(2,0,1), sharpen).permute(1,2,0) | |
else: | |
sharpened = img | |
img = ratio * sharpened + (1 - ratio) * blurred | |
img = torch.clamp(img, 0, 1) | |
output.append(img) | |
del blurred, sharpened | |
output = torch.stack(output) | |
return (output,) | |
class ExtractKeyframes: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"threshold": ("FLOAT", { "default": 0.85, "min": 0.00, "max": 1.00, "step": 0.01, }), | |
} | |
} | |
RETURN_TYPES = ("IMAGE", "STRING") | |
RETURN_NAMES = ("KEYFRAMES", "indexes") | |
FUNCTION = "execute" | |
CATEGORY = "essentials" | |
def execute(self, image, threshold): | |
window_size = 2 | |
variations = torch.sum(torch.abs(image[1:] - image[:-1]), dim=[1, 2, 3]) | |
#variations = torch.sum((image[1:] - image[:-1]) ** 2, dim=[1, 2, 3]) | |
threshold = torch.quantile(variations.float(), threshold).item() | |
keyframes = [] | |
for i in range(image.shape[0] - window_size + 1): | |
window = image[i:i + window_size] | |
variation = torch.sum(torch.abs(window[-1] - window[0])).item() | |
if variation > threshold: | |
keyframes.append(i + window_size - 1) | |
return (image[keyframes], ','.join(map(str, keyframes)),) | |
class ImageColorMatch: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"reference": ("IMAGE",), | |
"color_space": (["LAB", "YCbCr", "RGB", "LUV", "YUV", "XYZ"],), | |
"factor": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.05, }), | |
"device": (["auto", "cpu", "gpu"],), | |
"batch_size": ("INT", { "default": 0, "min": 0, "max": 1024, "step": 1, }), | |
}, | |
"optional": { | |
"reference_mask": ("MASK",), | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image processing" | |
def execute(self, image, reference, color_space, factor, device, batch_size, reference_mask=None): | |
if "gpu" == device: | |
device = comfy.model_management.get_torch_device() | |
elif "auto" == device: | |
device = comfy.model_management.intermediate_device() | |
else: | |
device = 'cpu' | |
image = image.permute([0, 3, 1, 2]) | |
reference = reference.permute([0, 3, 1, 2]).to(device) | |
# Ensure reference_mask is in the correct format and on the right device | |
if reference_mask is not None: | |
assert reference_mask.ndim == 3, f"Expected reference_mask to have 3 dimensions, but got {reference_mask.ndim}" | |
assert reference_mask.shape[0] == reference.shape[0], f"Frame count mismatch: reference_mask has {reference_mask.shape[0]} frames, but reference has {reference.shape[0]}" | |
# Reshape mask to (batch, 1, height, width) | |
reference_mask = reference_mask.unsqueeze(1).to(device) | |
# Ensure the mask is binary (0 or 1) | |
reference_mask = (reference_mask > 0.5).float() | |
# Ensure spatial dimensions match | |
if reference_mask.shape[2:] != reference.shape[2:]: | |
reference_mask = comfy.utils.common_upscale( | |
reference_mask, | |
reference.shape[3], reference.shape[2], | |
upscale_method='bicubic', | |
crop='center' | |
) | |
if batch_size == 0 or batch_size > image.shape[0]: | |
batch_size = image.shape[0] | |
if "LAB" == color_space: | |
reference = kornia.color.rgb_to_lab(reference) | |
elif "YCbCr" == color_space: | |
reference = kornia.color.rgb_to_ycbcr(reference) | |
elif "LUV" == color_space: | |
reference = kornia.color.rgb_to_luv(reference) | |
elif "YUV" == color_space: | |
reference = kornia.color.rgb_to_yuv(reference) | |
elif "XYZ" == color_space: | |
reference = kornia.color.rgb_to_xyz(reference) | |
reference_mean, reference_std = self.compute_mean_std(reference, reference_mask) | |
image_batch = torch.split(image, batch_size, dim=0) | |
output = [] | |
for image in image_batch: | |
image = image.to(device) | |
if color_space == "LAB": | |
image = kornia.color.rgb_to_lab(image) | |
elif color_space == "YCbCr": | |
image = kornia.color.rgb_to_ycbcr(image) | |
elif color_space == "LUV": | |
image = kornia.color.rgb_to_luv(image) | |
elif color_space == "YUV": | |
image = kornia.color.rgb_to_yuv(image) | |
elif color_space == "XYZ": | |
image = kornia.color.rgb_to_xyz(image) | |
image_mean, image_std = self.compute_mean_std(image) | |
matched = torch.nan_to_num((image - image_mean) / image_std) * torch.nan_to_num(reference_std) + reference_mean | |
matched = factor * matched + (1 - factor) * image | |
if color_space == "LAB": | |
matched = kornia.color.lab_to_rgb(matched) | |
elif color_space == "YCbCr": | |
matched = kornia.color.ycbcr_to_rgb(matched) | |
elif color_space == "LUV": | |
matched = kornia.color.luv_to_rgb(matched) | |
elif color_space == "YUV": | |
matched = kornia.color.yuv_to_rgb(matched) | |
elif color_space == "XYZ": | |
matched = kornia.color.xyz_to_rgb(matched) | |
out = matched.permute([0, 2, 3, 1]).clamp(0, 1).to(comfy.model_management.intermediate_device()) | |
output.append(out) | |
out = None | |
output = torch.cat(output, dim=0) | |
return (output,) | |
def compute_mean_std(self, tensor, mask=None): | |
if mask is not None: | |
# Apply mask to the tensor | |
masked_tensor = tensor * mask | |
# Calculate the sum of the mask for each channel | |
mask_sum = mask.sum(dim=[2, 3], keepdim=True) | |
# Avoid division by zero | |
mask_sum = torch.clamp(mask_sum, min=1e-6) | |
# Calculate mean and std only for masked area | |
mean = torch.nan_to_num(masked_tensor.sum(dim=[2, 3], keepdim=True) / mask_sum) | |
std = torch.sqrt(torch.nan_to_num(((masked_tensor - mean) ** 2 * mask).sum(dim=[2, 3], keepdim=True) / mask_sum)) | |
else: | |
mean = tensor.mean(dim=[2, 3], keepdim=True) | |
std = tensor.std(dim=[2, 3], keepdim=True) | |
return mean, std | |
class ImageColorMatchAdobe(ImageColorMatch): | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"reference": ("IMAGE",), | |
"color_space": (["RGB", "LAB"],), | |
"luminance_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 2.0, "step": 0.05}), | |
"color_intensity_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 2.0, "step": 0.05}), | |
"fade_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.05}), | |
"neutralization_factor": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.05}), | |
"device": (["auto", "cpu", "gpu"],), | |
}, | |
"optional": { | |
"reference_mask": ("MASK",), | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image processing" | |
def analyze_color_statistics(self, image, mask=None): | |
# Assuming image is in RGB format | |
l, a, b = kornia.color.rgb_to_lab(image).chunk(3, dim=1) | |
if mask is not None: | |
# Ensure mask is binary and has the same spatial dimensions as the image | |
mask = F.interpolate(mask, size=image.shape[2:], mode='nearest') | |
mask = (mask > 0.5).float() | |
# Apply mask to each channel | |
l = l * mask | |
a = a * mask | |
b = b * mask | |
# Compute masked mean and std | |
num_pixels = mask.sum() | |
mean_l = (l * mask).sum() / num_pixels | |
mean_a = (a * mask).sum() / num_pixels | |
mean_b = (b * mask).sum() / num_pixels | |
std_l = torch.sqrt(((l - mean_l)**2 * mask).sum() / num_pixels) | |
var_ab = ((a - mean_a)**2 + (b - mean_b)**2) * mask | |
std_ab = torch.sqrt(var_ab.sum() / num_pixels) | |
else: | |
mean_l = l.mean() | |
std_l = l.std() | |
mean_a = a.mean() | |
mean_b = b.mean() | |
std_ab = torch.sqrt(a.var() + b.var()) | |
return mean_l, std_l, mean_a, mean_b, std_ab | |
def apply_color_transformation(self, image, source_stats, dest_stats, L, C, N): | |
l, a, b = kornia.color.rgb_to_lab(image).chunk(3, dim=1) | |
# Unpack statistics | |
src_mean_l, src_std_l, src_mean_a, src_mean_b, src_std_ab = source_stats | |
dest_mean_l, dest_std_l, dest_mean_a, dest_mean_b, dest_std_ab = dest_stats | |
# Adjust luminance | |
l_new = (l - dest_mean_l) * (src_std_l / dest_std_l) * L + src_mean_l | |
# Neutralize color cast | |
a = a - N * dest_mean_a | |
b = b - N * dest_mean_b | |
# Adjust color intensity | |
a_new = a * (src_std_ab / dest_std_ab) * C | |
b_new = b * (src_std_ab / dest_std_ab) * C | |
# Combine channels | |
lab_new = torch.cat([l_new, a_new, b_new], dim=1) | |
# Convert back to RGB | |
rgb_new = kornia.color.lab_to_rgb(lab_new) | |
return rgb_new | |
def execute(self, image, reference, color_space, luminance_factor, color_intensity_factor, fade_factor, neutralization_factor, device, reference_mask=None): | |
if "gpu" == device: | |
device = comfy.model_management.get_torch_device() | |
elif "auto" == device: | |
device = comfy.model_management.intermediate_device() | |
else: | |
device = 'cpu' | |
# Ensure image and reference are in the correct shape (B, C, H, W) | |
image = image.permute(0, 3, 1, 2).to(device) | |
reference = reference.permute(0, 3, 1, 2).to(device) | |
# Handle reference_mask (if provided) | |
if reference_mask is not None: | |
# Ensure reference_mask is 4D (B, 1, H, W) | |
if reference_mask.ndim == 2: | |
reference_mask = reference_mask.unsqueeze(0).unsqueeze(0) | |
elif reference_mask.ndim == 3: | |
reference_mask = reference_mask.unsqueeze(1) | |
reference_mask = reference_mask.to(device) | |
# Analyze color statistics | |
source_stats = self.analyze_color_statistics(reference, reference_mask) | |
dest_stats = self.analyze_color_statistics(image) | |
# Apply color transformation | |
transformed = self.apply_color_transformation( | |
image, source_stats, dest_stats, | |
luminance_factor, color_intensity_factor, neutralization_factor | |
) | |
# Apply fade factor | |
result = fade_factor * transformed + (1 - fade_factor) * image | |
# Convert back to (B, H, W, C) format and ensure values are in [0, 1] range | |
result = result.permute(0, 2, 3, 1).clamp(0, 1).to(comfy.model_management.intermediate_device()) | |
return (result,) | |
class ImageHistogramMatch: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"reference": ("IMAGE",), | |
"method": (["pytorch", "skimage"],), | |
"factor": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.05, }), | |
"device": (["auto", "cpu", "gpu"],), | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image processing" | |
def execute(self, image, reference, method, factor, device): | |
if "gpu" == device: | |
device = comfy.model_management.get_torch_device() | |
elif "auto" == device: | |
device = comfy.model_management.intermediate_device() | |
else: | |
device = 'cpu' | |
if "pytorch" in method: | |
from .histogram_matching import Histogram_Matching | |
image = image.permute([0, 3, 1, 2]).to(device) | |
reference = reference.permute([0, 3, 1, 2]).to(device)[0].unsqueeze(0) | |
image.requires_grad = True | |
reference.requires_grad = True | |
out = [] | |
for i in image: | |
i = i.unsqueeze(0) | |
hm = Histogram_Matching(differentiable=True) | |
out.append(hm(i, reference)) | |
out = torch.cat(out, dim=0) | |
out = factor * out + (1 - factor) * image | |
out = out.permute([0, 2, 3, 1]).clamp(0, 1) | |
else: | |
from skimage.exposure import match_histograms | |
out = torch.from_numpy(match_histograms(image.cpu().numpy(), reference.cpu().numpy(), channel_axis=3)).to(device) | |
out = factor * out + (1 - factor) * image.to(device) | |
return (out.to(comfy.model_management.intermediate_device()),) | |
""" | |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
Utilities | |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
""" | |
class ImageToDevice: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"device": (["auto", "cpu", "gpu"],), | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image utils" | |
def execute(self, image, device): | |
if "gpu" == device: | |
device = comfy.model_management.get_torch_device() | |
elif "auto" == device: | |
device = comfy.model_management.intermediate_device() | |
else: | |
device = 'cpu' | |
image = image.clone().to(device) | |
torch.cuda.empty_cache() | |
return (image,) | |
class GetImageSize: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
} | |
} | |
RETURN_TYPES = ("INT", "INT", "INT",) | |
RETURN_NAMES = ("width", "height", "count") | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image utils" | |
def execute(self, image): | |
return (image.shape[2], image.shape[1], image.shape[0]) | |
class ImageRemoveAlpha: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
}, | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image utils" | |
def execute(self, image): | |
if image.shape[3] == 4: | |
image = image[..., :3] | |
return (image,) | |
class ImagePreviewFromLatent(SaveImage): | |
def __init__(self): | |
self.output_dir = folder_paths.get_temp_directory() | |
self.type = "temp" | |
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5)) | |
self.compress_level = 1 | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"latent": ("LATENT",), | |
"vae": ("VAE", ), | |
"tile_size": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}) | |
}, "optional": { | |
"image": (["none"], {"image_upload": False}), | |
}, "hidden": { | |
"prompt": "PROMPT", | |
"extra_pnginfo": "EXTRA_PNGINFO", | |
}, | |
} | |
RETURN_TYPES = ("IMAGE", "MASK", "INT", "INT",) | |
RETURN_NAMES = ("IMAGE", "MASK", "width", "height",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image utils" | |
def execute(self, latent, vae, tile_size, prompt=None, extra_pnginfo=None, image=None, filename_prefix="ComfyUI"): | |
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu") | |
ui = None | |
if image.startswith("clipspace"): | |
image_path = folder_paths.get_annotated_filepath(image) | |
if not os.path.exists(image_path): | |
raise ValueError(f"Clipspace image does not exist anymore, select 'none' in the image field.") | |
img = pillow(Image.open, image_path) | |
img = pillow(ImageOps.exif_transpose, img) | |
if img.mode == "I": | |
img = img.point(lambda i: i * (1 / 255)) | |
image = img.convert("RGB") | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = torch.from_numpy(image)[None,] | |
if "A" in img.getbands(): | |
mask = np.array(img.getchannel('A')).astype(np.float32) / 255.0 | |
mask = 1. - torch.from_numpy(mask) | |
ui = { | |
"filename": os.path.basename(image_path), | |
"subfolder": os.path.dirname(image_path), | |
"type": "temp", | |
} | |
else: | |
if tile_size > 0: | |
tile_size = max(tile_size, 320) | |
image = vae.decode_tiled(latent["samples"], tile_x=tile_size // 8, tile_y=tile_size // 8, ) | |
else: | |
image = vae.decode(latent["samples"]) | |
ui = self.save_images(image, filename_prefix, prompt, extra_pnginfo) | |
out = {**ui, "result": (image, mask, image.shape[2], image.shape[1],)} | |
return out | |
class NoiseFromImage: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"noise_strenght": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01 }), | |
"noise_size": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01 }), | |
"color_noise": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.01 }), | |
"mask_strength": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01 }), | |
"mask_scale_diff": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01 }), | |
"mask_contrast": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.1 }), | |
"saturation": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 100.0, "step": 0.1 }), | |
"contrast": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.1 }), | |
"blur": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.1 }), | |
}, | |
"optional": { | |
"noise_mask": ("IMAGE",), | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/image utils" | |
def execute(self, image, noise_size, color_noise, mask_strength, mask_scale_diff, mask_contrast, noise_strenght, saturation, contrast, blur, noise_mask=None): | |
torch.manual_seed(0) | |
elastic_alpha = max(image.shape[1], image.shape[2])# * noise_size | |
elastic_sigma = elastic_alpha / 400 * noise_size | |
blur_size = int(6 * blur+1) | |
if blur_size % 2 == 0: | |
blur_size+= 1 | |
if noise_mask is None: | |
noise_mask = image | |
# increase contrast of the mask | |
if mask_contrast != 1: | |
noise_mask = T.ColorJitter(contrast=(mask_contrast,mask_contrast))(noise_mask.permute([0, 3, 1, 2])).permute([0, 2, 3, 1]) | |
# Ensure noise mask is the same size as the image | |
if noise_mask.shape[1:] != image.shape[1:]: | |
noise_mask = F.interpolate(noise_mask.permute([0, 3, 1, 2]), size=(image.shape[1], image.shape[2]), mode='bicubic', align_corners=False) | |
noise_mask = noise_mask.permute([0, 2, 3, 1]) | |
# Ensure we have the same number of masks and images | |
if noise_mask.shape[0] > image.shape[0]: | |
noise_mask = noise_mask[:image.shape[0]] | |
else: | |
noise_mask = torch.cat((noise_mask, noise_mask[-1:].repeat((image.shape[0]-noise_mask.shape[0], 1, 1, 1))), dim=0) | |
# Convert mask to grayscale mask | |
noise_mask = noise_mask.mean(dim=3).unsqueeze(-1) | |
# add color noise | |
imgs = image.clone().permute([0, 3, 1, 2]) | |
if color_noise > 0: | |
color_noise = torch.normal(torch.zeros_like(imgs), std=color_noise) | |
color_noise *= (imgs - imgs.min()) / (imgs.max() - imgs.min()) | |
imgs = imgs + color_noise | |
imgs = imgs.clamp(0, 1) | |
# create fine and coarse noise | |
fine_noise = [] | |
for n in imgs: | |
avg_color = n.mean(dim=[1,2]) | |
tmp_noise = T.ElasticTransform(alpha=elastic_alpha, sigma=elastic_sigma, fill=avg_color.tolist())(n) | |
if blur > 0: | |
tmp_noise = T.GaussianBlur(blur_size, blur)(tmp_noise) | |
tmp_noise = T.ColorJitter(contrast=(contrast,contrast), saturation=(saturation,saturation))(tmp_noise) | |
fine_noise.append(tmp_noise) | |
imgs = None | |
del imgs | |
fine_noise = torch.stack(fine_noise, dim=0) | |
fine_noise = fine_noise.permute([0, 2, 3, 1]) | |
#fine_noise = torch.stack(fine_noise, dim=0) | |
#fine_noise = pb(fine_noise) | |
mask_scale_diff = min(mask_scale_diff, 0.99) | |
if mask_scale_diff > 0: | |
coarse_noise = F.interpolate(fine_noise.permute([0, 3, 1, 2]), scale_factor=1-mask_scale_diff, mode='area') | |
coarse_noise = F.interpolate(coarse_noise, size=(fine_noise.shape[1], fine_noise.shape[2]), mode='bilinear', align_corners=False) | |
coarse_noise = coarse_noise.permute([0, 2, 3, 1]) | |
else: | |
coarse_noise = fine_noise | |
output = (1 - noise_mask) * coarse_noise + noise_mask * fine_noise | |
if mask_strength < 1: | |
noise_mask = noise_mask.pow(mask_strength) | |
noise_mask = torch.nan_to_num(noise_mask).clamp(0, 1) | |
output = noise_mask * output + (1 - noise_mask) * image | |
# apply noise to image | |
output = output * noise_strenght + image * (1 - noise_strenght) | |
output = output.clamp(0, 1) | |
return (output, ) | |
IMAGE_CLASS_MAPPINGS = { | |
# Image analysis | |
"ImageEnhanceDifference+": ImageEnhanceDifference, | |
# Image batch | |
"ImageBatchMultiple+": ImageBatchMultiple, | |
"ImageExpandBatch+": ImageExpandBatch, | |
"ImageFromBatch+": ImageFromBatch, | |
"ImageListToBatch+": ImageListToBatch, | |
"ImageBatchToList+": ImageBatchToList, | |
# Image manipulation | |
"ImageCompositeFromMaskBatch+": ImageCompositeFromMaskBatch, | |
"ImageComposite+": ImageComposite, | |
"ImageCrop+": ImageCrop, | |
"ImageFlip+": ImageFlip, | |
"ImageRandomTransform+": ImageRandomTransform, | |
"ImageRemoveAlpha+": ImageRemoveAlpha, | |
"ImageRemoveBackground+": ImageRemoveBackground, | |
"ImageResize+": ImageResize, | |
"ImageSeamCarving+": ImageSeamCarving, | |
"ImageTile+": ImageTile, | |
"ImageUntile+": ImageUntile, | |
"RemBGSession+": RemBGSession, | |
"TransparentBGSession+": TransparentBGSession, | |
# Image processing | |
"ImageApplyLUT+": ImageApplyLUT, | |
"ImageCASharpening+": ImageCAS, | |
"ImageDesaturate+": ImageDesaturate, | |
"PixelOEPixelize+": PixelOEPixelize, | |
"ImagePosterize+": ImagePosterize, | |
"ImageColorMatch+": ImageColorMatch, | |
"ImageColorMatchAdobe+": ImageColorMatchAdobe, | |
"ImageHistogramMatch+": ImageHistogramMatch, | |
"ImageSmartSharpen+": ImageSmartSharpen, | |
# Utilities | |
"GetImageSize+": GetImageSize, | |
"ImageToDevice+": ImageToDevice, | |
"ImagePreviewFromLatent+": ImagePreviewFromLatent, | |
"NoiseFromImage+": NoiseFromImage, | |
#"ExtractKeyframes+": ExtractKeyframes, | |
} | |
IMAGE_NAME_MAPPINGS = { | |
# Image analysis | |
"ImageEnhanceDifference+": "🔧 Image Enhance Difference", | |
# Image batch | |
"ImageBatchMultiple+": "🔧 Images Batch Multiple", | |
"ImageExpandBatch+": "🔧 Image Expand Batch", | |
"ImageFromBatch+": "🔧 Image From Batch", | |
"ImageListToBatch+": "🔧 Image List To Batch", | |
"ImageBatchToList+": "🔧 Image Batch To List", | |
# Image manipulation | |
"ImageCompositeFromMaskBatch+": "🔧 Image Composite From Mask Batch", | |
"ImageComposite+": "🔧 Image Composite", | |
"ImageCrop+": "🔧 Image Crop", | |
"ImageFlip+": "🔧 Image Flip", | |
"ImageRandomTransform+": "🔧 Image Random Transform", | |
"ImageRemoveAlpha+": "🔧 Image Remove Alpha", | |
"ImageRemoveBackground+": "🔧 Image Remove Background", | |
"ImageResize+": "🔧 Image Resize", | |
"ImageSeamCarving+": "🔧 Image Seam Carving", | |
"ImageTile+": "🔧 Image Tile", | |
"ImageUntile+": "🔧 Image Untile", | |
"RemBGSession+": "🔧 RemBG Session", | |
"TransparentBGSession+": "🔧 InSPyReNet TransparentBG", | |
# Image processing | |
"ImageApplyLUT+": "🔧 Image Apply LUT", | |
"ImageCASharpening+": "🔧 Image Contrast Adaptive Sharpening", | |
"ImageDesaturate+": "🔧 Image Desaturate", | |
"PixelOEPixelize+": "🔧 Pixelize", | |
"ImagePosterize+": "🔧 Image Posterize", | |
"ImageColorMatch+": "🔧 Image Color Match", | |
"ImageColorMatchAdobe+": "🔧 Image Color Match Adobe", | |
"ImageHistogramMatch+": "🔧 Image Histogram Match", | |
"ImageSmartSharpen+": "🔧 Image Smart Sharpen", | |
# Utilities | |
"GetImageSize+": "🔧 Get Image Size", | |
"ImageToDevice+": "🔧 Image To Device", | |
"ImagePreviewFromLatent+": "🔧 Image Preview From Latent", | |
"NoiseFromImage+": "🔧 Noise From Image", | |
} | |