Spaces:
Sleeping
Sleeping
#---------------------------------------------------------------------------------------------------------------------# | |
# Comfyroll Studio custom nodes by RockOfFire and Akatsuzi https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes | |
# for ComfyUI https://github.com/comfyanonymous/ComfyUI | |
#---------------------------------------------------------------------------------------------------------------------# | |
#---------------------------------------------------------------------------------------------------------------------# | |
# UPSCALE FUNCTIONS | |
#---------------------------------------------------------------------------------------------------------------------# | |
# These functions are based on WAS nodes Image Resize and the Comfy Extras upscale with model nodes | |
import torch | |
#import os | |
from comfy_extras.chainner_models import model_loading | |
from comfy import model_management | |
import numpy as np | |
import comfy.utils | |
import folder_paths | |
from PIL import Image | |
# PIL to Tensor | |
def pil2tensor(image): | |
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0) | |
# Tensor to PIL | |
def tensor2pil(image): | |
return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)) | |
def load_model(model_name): | |
model_path = folder_paths.get_full_path("upscale_models", model_name) | |
sd = comfy.utils.load_torch_file(model_path, safe_load=True) | |
if "module.layers.0.residual_group.blocks.0.norm1.weight" in sd: | |
sd = comfy.utils.state_dict_prefix_replace(sd, {"module.":""}) | |
out = model_loading.load_state_dict(sd).eval() | |
return out | |
def upscale_with_model(upscale_model, image): | |
device = model_management.get_torch_device() | |
upscale_model.to(device) | |
in_img = image.movedim(-1,-3).to(device) | |
free_memory = model_management.get_free_memory(device) | |
tile = 512 | |
overlap = 32 | |
oom = True | |
while oom: | |
try: | |
steps = in_img.shape[0] * comfy.utils.get_tiled_scale_steps(in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap) | |
pbar = comfy.utils.ProgressBar(steps) | |
s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar) | |
oom = False | |
except model_management.OOM_EXCEPTION as e: | |
tile //= 2 | |
if tile < 128: | |
raise e | |
upscale_model.cpu() | |
s = torch.clamp(s.movedim(-3,-1), min=0, max=1.0) | |
return s | |
def apply_resize_image(image: Image.Image, original_width, original_height, rounding_modulus, mode='scale', supersample='true', factor: int = 2, width: int = 1024, height: int = 1024, resample='bicubic'): | |
# Calculate the new width and height based on the given mode and parameters | |
if mode == 'rescale': | |
new_width, new_height = int(original_width * factor), int(original_height * factor) | |
else: | |
m = rounding_modulus | |
original_ratio = original_height / original_width | |
height = int(width * original_ratio) | |
new_width = width if width % m == 0 else width + (m - width % m) | |
new_height = height if height % m == 0 else height + (m - height % m) | |
# Define a dictionary of resampling filters | |
resample_filters = {'nearest': 0, 'bilinear': 2, 'bicubic': 3, 'lanczos': 1} | |
# Apply supersample | |
if supersample == 'true': | |
image = image.resize((new_width * 8, new_height * 8), resample=Image.Resampling(resample_filters[resample])) | |
# Resize the image using the given resampling filter | |
resized_image = image.resize((new_width, new_height), resample=Image.Resampling(resample_filters[resample])) | |
return resized_image | |