Arv3st / app.py
Ashrafb's picture
Update app.py
f6bde3a
import gradio as gr
import os
import sys
import random
import string
import time
from queue import Queue
from threading import Thread
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-one-mmt")
tokenizer = MBart50TokenizerFast
API_URL = "models/facebook/mbart-large-50-many-to-one-mmt"
API_TOKEN = os.environ.get("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
text_gen = gr.Interface.load(API_URL, headers=headers)
proc1 = gr.Interface.load("models/openskyml/midjourney-v4-xl")
# ... (remaining code)
# The rest of your existing code...
def restart_script_periodically():
while True:
random_time = random.randint(540, 600)
time.sleep(random_time)
os.execl(sys.executable, sys.executable, *sys.argv)
restart_thread = Thread(target=restart_script_periodically, daemon=True)
restart_thread.start()
queue = Queue()
queue_threshold = 100
def add_random_noise(prompt, noise_level=0.00):
if noise_level == 0:
noise_level = 0.00
percentage_noise = noise_level * 5
num_noise_chars = int(len(prompt) * (percentage_noise / 100))
noise_indices = random.sample(range(len(prompt)), num_noise_chars)
prompt_list = list(prompt)
noise_chars = list(string.ascii_letters + string.punctuation + ' ' + string.digits)
noise_chars.extend(['๐Ÿ˜', '๐Ÿ’ฉ', '๐Ÿ˜‚', '๐Ÿค”', '๐Ÿ˜Š', '๐Ÿค—', '๐Ÿ˜ญ', '๐Ÿ™„', '๐Ÿ˜ท', '๐Ÿคฏ', '๐Ÿคซ', '๐Ÿฅด', '๐Ÿ˜ด', '๐Ÿคฉ', '๐Ÿฅณ', '๐Ÿ˜”', '๐Ÿ˜ฉ', '๐Ÿคช', '๐Ÿ˜‡', '๐Ÿคข', '๐Ÿ˜ˆ', '๐Ÿ‘น', '๐Ÿ‘ป', '๐Ÿค–', '๐Ÿ‘ฝ', '๐Ÿ’€', '๐ŸŽƒ', '๐ŸŽ…', '๐ŸŽ„', '๐ŸŽ', '๐ŸŽ‚', '๐ŸŽ‰', '๐ŸŽˆ', '๐ŸŽŠ', '๐ŸŽฎ', 'โค๏ธ', '๐Ÿ’”', '๐Ÿ’•', '๐Ÿ’–', '๐Ÿ’—', '๐Ÿถ', '๐Ÿฑ', '๐Ÿญ', '๐Ÿน', '๐ŸฆŠ', '๐Ÿป', '๐Ÿจ', '๐Ÿฏ', '๐Ÿฆ', '๐Ÿ˜', '๐Ÿ”ฅ', '๐ŸŒง๏ธ', '๐ŸŒž', '๐ŸŒˆ', '๐Ÿ’ฅ', '๐ŸŒด', '๐ŸŒŠ', '๐ŸŒบ', '๐ŸŒป', '๐ŸŒธ', '๐ŸŽจ', '๐ŸŒ…', '๐ŸŒŒ', 'โ˜๏ธ', 'โ›ˆ๏ธ', 'โ„๏ธ', 'โ˜€๏ธ', '๐ŸŒค๏ธ', 'โ›…๏ธ', '๐ŸŒฅ๏ธ', '๐ŸŒฆ๏ธ', '๐ŸŒง๏ธ', '๐ŸŒฉ๏ธ', '๐ŸŒจ๏ธ', '๐ŸŒซ๏ธ', 'โ˜”๏ธ', '๐ŸŒฌ๏ธ', '๐Ÿ’จ', '๐ŸŒช๏ธ', '๐ŸŒˆ'])
for index in noise_indices:
prompt_list[index] = random.choice(noise_chars)
return "".join(prompt_list)
# Existing code...
import uuid # Import the UUID library
# Existing code...
# Existing code...
request_counter = 0 # Global counter to track requests
def send_it1(inputs, noise_level, proc=proc1):
global request_counter
request_counter += 1
timestamp = f"{time.time()}_{request_counter}"
prompt_with_noise = add_random_noise(inputs, noise_level) + f" - {timestamp}"
try:
while queue.qsize() >= queue_threshold:
time.sleep(2)
queue.put(prompt_with_noise)
output = proc(prompt_with_noise)
return output
except Exception as e:
# Display a generic error message to the user
raise gr.Error("Experiencing high demand. Please retry shortly. Thank you for your patience.")
import random
import random
import time
# ... (existing code)
import random
import time
# ... (existing code)
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-one-mmt")
tokenizer = MBart50TokenizerFast
def get_prompts(prompt_text):
if not prompt_text:
return "Please enter text before generating prompts.ุฑุฌุงุก ุงุฏุฎู„ ุงู„ู†ุต ุงูˆู„ุง"
else:
global request_counter
request_counter += 1
timestamp = f"{time.time()}_{request_counter}"
tokenizer.src_lang = "ar_AR"
encoded_ar = tokenizer(prompt_text, return_tensors="pt")
generated_tokens = model.generate(**encoded_ar)
translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
return translated_text
# Existing code...
# Existing code...
with gr.Blocks(css=".gradio-container {background-color: #F5F5F5;} .dark .gradio-container {background-color: linear-gradient(to top, #09203f 0%, #537895 100%);} footer{display:none !important;}",) as demo:
with gr.Column(elem_id="col-container"):
with gr.Row(variant="compact"):
input_text = gr.Textbox(
lines=8,
label="Short Prompt",
show_label=False,
max_lines=10,
placeholder="Enter a basic idea and click 'Magic Prompt'. Got no ideas? No problem, Simply just hit the magic button!",
).style(
container=False,
textarea={'height': '400px'}
)
see_prompts = gr.Button("โœจ Magic Prompt โœจ").style(full_width=False)
with gr.Row(variant="compact"):
prompt = gr.Textbox(
lines=8,
label="Enter your prompt",
show_label=False,
max_lines=10,
placeholder="Full Prompt",
).style(
container=False,
textarea={'height': '400px'}
)
run = gr.Button("Generate Images").style(full_width=False)
with gr.Row():
with gr.Row():
noise_level = gr.Slider(minimum=0.0, maximum=3, step=0.1, label="Noise Level")
with gr.Row():
with gr.Row():
output1 = gr.Image(label="Dreamlike Diffusion 1.0", show_label=False, show_share_button=False)
output2 = gr.Image(label="Dreamlike Diffusion 1.0", show_label=False, show_share_button=False)
see_prompts.click(get_prompts, inputs=[input_text], outputs=[prompt], queue=False)
run.click(send_it1, inputs=[prompt, noise_level], outputs=[output1])
run.click(send_it1, inputs=[prompt, noise_level], outputs=[output2])
demo.launch(enable_queue=True, inline=True)