DualStyleGAN / app.py
hysts's picture
hysts HF staff
Update
9735cfa
#!/usr/bin/env python
from __future__ import annotations
import pathlib
import gradio as gr
from dualstylegan import Model
DESCRIPTION = '''# Portrait Style Transfer with [DualStyleGAN](https://github.com/williamyang1991/DualStyleGAN)
<img id="overview" alt="overview" src="https://raw.githubusercontent.com/williamyang1991/DualStyleGAN/main/doc_images/overview.jpg" />
'''
def get_style_image_url(style_name: str) -> str:
base_url = 'https://raw.githubusercontent.com/williamyang1991/DualStyleGAN/main/doc_images'
filenames = {
'cartoon': 'cartoon_overview.jpg',
'caricature': 'caricature_overview.jpg',
'anime': 'anime_overview.jpg',
'arcane': 'Reconstruction_arcane_overview.jpg',
'comic': 'Reconstruction_comic_overview.jpg',
'pixar': 'Reconstruction_pixar_overview.jpg',
'slamdunk': 'Reconstruction_slamdunk_overview.jpg',
}
return f'{base_url}/{filenames[style_name]}'
def get_style_image_markdown_text(style_name: str) -> str:
url = get_style_image_url(style_name)
return f'<img id="style-image" src="{url}" alt="style image">'
def update_slider(choice: str) -> dict:
max_vals = {
'cartoon': 316,
'caricature': 198,
'anime': 173,
'arcane': 99,
'comic': 100,
'pixar': 121,
'slamdunk': 119,
}
return gr.update(maximum=max_vals[choice])
def update_style_image(style_name: str) -> dict:
text = get_style_image_markdown_text(style_name)
return gr.update(value=text)
model = Model()
with gr.Blocks(css='style.css') as demo:
gr.Markdown(DESCRIPTION)
with gr.Box():
gr.Markdown('''## Step 1 (Preprocess Input Image)
- Drop an image containing a near-frontal face to the **Input Image**.
- If there are multiple faces in the image, hit the Edit button in the upper right corner and crop the input image beforehand.
- Hit the **Preprocess** button.
- Choose the encoder version. Default is Z+ encoder which has better stylization performance. W+ encoder better reconstructs the input image to preserve more details.
- The final result will be based on this **Reconstructed Face**. So, if the reconstructed image is not satisfactory, you may want to change the input image.
''')
with gr.Row():
encoder_type = gr.Radio(label='Encoder Type',
choices=[
'Z+ encoder (better stylization)',
'W+ encoder (better reconstruction)'
],
value='Z+ encoder (better stylization)')
with gr.Row():
with gr.Column():
with gr.Row():
input_image = gr.Image(label='Input Image',
type='filepath')
with gr.Row():
preprocess_button = gr.Button('Preprocess')
with gr.Column():
with gr.Row():
aligned_face = gr.Image(label='Aligned Face',
type='numpy',
interactive=False)
with gr.Column():
reconstructed_face = gr.Image(label='Reconstructed Face',
type='numpy')
instyle = gr.State()
with gr.Row():
paths = sorted(pathlib.Path('images').glob('*.jpg'))
gr.Examples(examples=[[path.as_posix()] for path in paths],
inputs=input_image)
with gr.Box():
gr.Markdown('''## Step 2 (Select Style Image)
- Select **Style Type**.
- Select **Style Image Index** from the image table below.
''')
with gr.Row():
with gr.Column():
style_type = gr.Radio(label='Style Type',
choices=model.style_types,
value=model.style_types[0])
text = get_style_image_markdown_text('cartoon')
style_image = gr.Markdown(value=text)
style_index = gr.Slider(label='Style Image Index',
minimum=0,
maximum=316,
step=1,
value=26)
with gr.Row():
gr.Examples(
examples=[
['cartoon', 26],
['caricature', 65],
['arcane', 63],
['pixar', 80],
],
inputs=[style_type, style_index],
)
with gr.Box():
gr.Markdown('''## Step 3 (Generate Style Transferred Image)
- Adjust **Structure Weight** and **Color Weight**.
- These are weights for the style image, so the larger the value, the closer the resulting image will be to the style image.
- Tips: For W+ encoder, better way of (Structure Only) is to uncheck (Structure Only) and set Color weight to 0.
- Hit the **Generate** button.
''')
with gr.Row():
with gr.Column():
with gr.Row():
structure_weight = gr.Slider(label='Structure Weight',
minimum=0,
maximum=1,
step=0.1,
value=0.6)
with gr.Row():
color_weight = gr.Slider(label='Color Weight',
minimum=0,
maximum=1,
step=0.1,
value=1)
with gr.Row():
structure_only = gr.Checkbox(label='Structure Only',
value=False)
with gr.Row():
generate_button = gr.Button('Generate')
with gr.Column():
result = gr.Image(label='Result')
with gr.Row():
gr.Examples(
examples=[
[0.6, 1.0],
[0.3, 1.0],
[0.0, 1.0],
[1.0, 0.0],
],
inputs=[structure_weight, color_weight],
)
preprocess_button.click(
fn=model.detect_and_align_face,
inputs=[input_image],
outputs=aligned_face,
)
aligned_face.change(
fn=model.reconstruct_face,
inputs=[aligned_face, encoder_type],
outputs=[
reconstructed_face,
instyle,
],
)
style_type.change(
fn=update_slider,
inputs=style_type,
outputs=style_index,
)
style_type.change(
fn=update_style_image,
inputs=style_type,
outputs=style_image,
)
generate_button.click(
fn=model.generate,
inputs=[
style_type,
style_index,
structure_weight,
color_weight,
structure_only,
instyle,
],
outputs=result,
)
demo.queue(max_size=20).launch()