File size: 1,549 Bytes
2ba745b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2390e19
2ba745b
 
 
 
 
 
2390e19
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from transformers import pipeline
import gradio as gr


# get_completion = pipeline("summarization")
get_completion = pipeline("ner", model="dslim/bert-base-NER")


def merge_tokens(tokens):
    merged_tokens = []
    for token in tokens:
        if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]):
            # If current token continues the entity of the last one, merge them
            last_token = merged_tokens[-1]
            last_token['word'] += token['word'].replace('##', '')
            last_token['end'] = token['end']
            last_token['score'] = (last_token['score'] + token['score']) / 2
        else:
            # Otherwise, add the token to the list
            merged_tokens.append(token)

    return merged_tokens

def ner(input):
    output = get_completion(input)
    merged_tokens = merge_tokens(output)
    return {"text": input, "entities": merged_tokens}

gr.close_all()
demo = gr.Interface(fn=ner,
                    inputs=[gr.Textbox(label="Text to find entities", lines=2)],
                    outputs=[gr.HighlightedText(label="Text with entities")],
                    title="Named Entity Recongnition with dslim/bert-base-NER",
                    description="Find entities using the `dslim/bert-base-NER` model under the hood!",
                    allow_flagging="never",
                    examples=["My name is Ashutosh. I'm from India and I like building Generative AI applications πŸ§ πŸ€–πŸš€πŸŒŒ."])

demo.launch()

gr.close_all()