Spaces:
Sleeping
Sleeping
add model code
Browse files
app.py
CHANGED
@@ -1,4 +1,78 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
def greet(name):
|
4 |
return "Hello " + name + "!!"
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import tensorflow as tf
|
5 |
+
import keras
|
6 |
+
from keras import layers, models
|
7 |
+
|
8 |
+
model = model = tf.keras.models.load_model('model/ocr_model.h5')
|
9 |
+
|
10 |
+
def preprocessImage(img, shape):
|
11 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
12 |
+
img = cv2.resize(img, (shape))
|
13 |
+
img = (img/255).astype(np.float32)
|
14 |
+
img = img.T
|
15 |
+
img = np.expand_dims(img, axis=-1)
|
16 |
+
return img
|
17 |
+
|
18 |
+
label2char ={0: ' ',
|
19 |
+
1: "'",
|
20 |
+
2: '-',
|
21 |
+
3: 'A',
|
22 |
+
4: 'B',
|
23 |
+
5: 'C',
|
24 |
+
6: 'D',
|
25 |
+
7: 'E',
|
26 |
+
8: 'F',
|
27 |
+
9: 'G',
|
28 |
+
10: 'H',
|
29 |
+
11: 'I',
|
30 |
+
12: 'J',
|
31 |
+
13: 'K',
|
32 |
+
14: 'L',
|
33 |
+
15: 'M',
|
34 |
+
16: 'N',
|
35 |
+
17: 'O',
|
36 |
+
18: 'P',
|
37 |
+
19: 'Q',
|
38 |
+
20: 'R',
|
39 |
+
21: 'S',
|
40 |
+
22: 'T',
|
41 |
+
23: 'U',
|
42 |
+
24: 'V',
|
43 |
+
25: 'W',
|
44 |
+
26: 'X',
|
45 |
+
27: 'Y',
|
46 |
+
28: 'Z',
|
47 |
+
29: '`'}
|
48 |
+
|
49 |
+
def getStringFromEncode(lst :list):
|
50 |
+
return ''.join([label2char[i] if i in label2char else '' for i in lst])
|
51 |
+
|
52 |
+
def decode_batch_predictions(pred):
|
53 |
+
pred = pred[:, :-2] # first two layers of ctc garbage
|
54 |
+
input_len = np.ones(pred.shape[0])*pred.shape[1]
|
55 |
+
|
56 |
+
results = keras.backend.ctc_decode(pred,
|
57 |
+
input_length=input_len,
|
58 |
+
greedy=True)[0][0]
|
59 |
+
|
60 |
+
output_text = []
|
61 |
+
for res in results.numpy():
|
62 |
+
outstr = getStringFromEncode(res)
|
63 |
+
output_text.append(outstr)
|
64 |
+
|
65 |
+
# return final text results
|
66 |
+
return output_text
|
67 |
+
|
68 |
+
def predict(img):
|
69 |
+
img = preprocessImage(img, (256,64))
|
70 |
+
img = np.expand_dims(img, axis=0) # 1 image in batch
|
71 |
+
|
72 |
+
preds = model.predict(img)
|
73 |
+
pred_texts = decode_batch_predictions(preds)
|
74 |
+
return pred_texts[0]
|
75 |
+
|
76 |
|
77 |
def greet(name):
|
78 |
return "Hello " + name + "!!"
|