Asutosh2003 commited on
Commit
3cba291
1 Parent(s): e8fb962

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -2
app.py CHANGED
@@ -115,12 +115,28 @@ def gr_predict(text):
115
 
116
  return out_str
117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
  # Gradio Interface
119
  iface = gr.Interface(
120
  fn=gr_predict,
121
  inputs=gr.Textbox(),
122
- outputs=gr.Label() # Use Label widget for output
 
 
 
 
123
  )
124
-
125
  # Launch the Gradio app
126
  iface.launch(debug=True)
 
115
 
116
  return out_str
117
 
118
+ descr = """
119
+
120
+ This app uses [Covid-twitter-BERT-v2](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2)
121
+ fine tuned on a custom subset of [Caves dataset](https://arxiv.org/abs/2204.13746) sent by [FIRE 2023](http://fire.irsi.res.in/fire/2023/home)
122
+ conference to do multi-label classification of tweets expressing concerns towards vaccines. The different concerns/classes are
123
+ ('side-effect', 'ineffective', 'rushed', 'pharma', 'mandatory', 'unnecessary', 'political', 'ingredients', 'conspiracy', 'country', 'religious').
124
+ Each tweet can be expressing multiple of these concerns. If a tweet is not expressing any concern falling into any of these categories
125
+ it will be classified as 'None'.\n
126
+ [Source files](https://github.com/Ranjit246/AISoME_FIRE_2023)\n
127
+ Try it out with some ridiculous statements about vaccines. You can use the examples below as a start.
128
+
129
+
130
+ """
131
  # Gradio Interface
132
  iface = gr.Interface(
133
  fn=gr_predict,
134
  inputs=gr.Textbox(),
135
+ outputs=gr.Label(), # Use Label widget for output
136
+ examples=["This vaccine gave me mumps", "Chinese vaccine will infect our brain",
137
+ "Trump is gonna use these vaccines to control us and become the president"],
138
+ title="Vaccine Concerns ML",
139
+ description=descr
140
  )
 
141
  # Launch the Gradio app
142
  iface.launch(debug=True)