File size: 1,623 Bytes
2b6b154 d24a963 1b3204d 00df41d d24a963 145ecb9 ac962aa 145ecb9 2b6b154 4581f8a 145ecb9 4581f8a 145ecb9 afd19d1 145ecb9 4581f8a 145ecb9 afd19d1 145ecb9 2b6b154 09e1b8b 145ecb9 1a33cc7 1b3204d 3b50be6 5d32a98 129a216 5d32a98 4581f8a 36cb54d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import gradio as gr
import spaces
import torch
import transformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "meta-llama/Meta-Llama-3-8B-Instruct"
pipeline = transformers.pipeline(
"text-generation",
model=model_name,
model_kwargs={"torch_dtype": torch.bfloat16},
device="cpu",
)
@spaces.GPU
def chat_function(message, history, system_prompt,max_new_tokens,temperature):
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": message},
]
prompt = pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
temp = temperature + 0.1
outputs = pipeline(
prompt,
max_new_tokens=max_new_tokens,
eos_token_id=terminators,
do_sample=True,
temperature=temp,
top_p=0.9,
)
return outputs[0]["generated_text"][len(prompt):]
gr.ChatInterface(
chat_function,
chatbot=gr.Chatbot(height=400),
textbox=gr.Textbox(placeholder="Enter message here", container=False, scale=7),
title="Meta-Llama-3-8B-Instruct",
description="""
To Learn about Fine-tuning Llama-3-8B, Check https://exnrt.com/blog/ai/finetune-llama3-8b/.
""",
additional_inputs=[
gr.Textbox("You are helpful AI.", label="System Prompt"),
gr.Slider(512, 4096, label="Max New Tokens"),
gr.Slider(0, 1, label="Temperature")
]
).launch()
|