File size: 24,225 Bytes
dbd97ea
 
 
 
 
 
 
 
6f46699
7af825c
dbd97ea
 
7af825c
 
dbd97ea
 
7af825c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbd97ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7af825c
dbd97ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7af825c
 
dbd97ea
 
7af825c
 
 
 
 
 
dbd97ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7af825c
 
dbd97ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7af825c
 
dbd97ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7af825c
 
dbd97ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7af825c
 
dbd97ea
7af825c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00e2ba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b58e0f1
00e2ba1
 
 
 
 
 
b58e0f1
00e2ba1
 
 
 
 
b58e0f1
00e2ba1
7af825c
dbd97ea
7af825c
c29f61a
dbd97ea
 
 
 
 
 
7af825c
c29f61a
7af825c
00e2ba1
 
 
 
 
 
 
 
 
 
7af825c
 
 
 
 
c29f61a
 
7af825c
35c02ea
7af825c
 
 
 
 
c29f61a
7af825c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c29f61a
7af825c
 
 
 
dbd97ea
7af825c
 
dbd97ea
 
 
 
 
 
 
 
 
 
 
 
 
7af825c
dbd97ea
 
 
 
 
 
 
 
7af825c
dbd97ea
 
 
7af825c
dbd97ea
 
 
 
 
 
7af825c
dbd97ea
 
 
 
 
 
 
 
 
 
7af825c
dbd97ea
35c02ea
 
 
 
 
 
 
 
dbd97ea
 
35c02ea
dbd97ea
 
 
 
35c02ea
dbd97ea
 
 
 
 
 
 
 
7af825c
dbd97ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
022688b
 
 
 
dbd97ea
 
 
 
 
 
022688b
 
 
dbd97ea
 
 
 
 
 
022688b
dbd97ea
 
 
 
 
 
 
 
7af825c
dbd97ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7af825c
dbd97ea
 
 
 
7af825c
 
dbd97ea
 
 
 
 
7af825c
dbd97ea
 
 
7af825c
dbd97ea
 
7af825c
dbd97ea
 
 
 
7af825c
dbd97ea
 
 
 
 
 
 
 
 
 
 
7af825c
 
dbd97ea
7af825c
 
 
 
 
dbd97ea
7af825c
 
 
 
 
 
dbd97ea
b58e0f1
00e2ba1
b58e0f1
 
00e2ba1
 
 
b58e0f1
 
 
 
 
 
 
00e2ba1
 
b58e0f1
 
 
 
00e2ba1
b58e0f1
 
 
 
 
 
 
 
 
00e2ba1
b58e0f1
00e2ba1
b58e0f1
 
00e2ba1
 
7af825c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
from datetime import datetime
import json
import gradio as gr
import re
import random
from collections import defaultdict
import pandas as pd
import os   
from gen_api_answer import get_model_response, parse_model_response
from common import *

# Model and ELO score data
DEFAULT_ELO = 1500  # Starting ELO for new models
K_FACTOR = 32  # Standard chess K-factor, adjust as needed
elo_scores = defaultdict(lambda: DEFAULT_ELO)
vote_counts = defaultdict(int)


# Load the model_data from JSONL
def load_model_data():
    model_data = {}
    try:
        with open('data/models.jsonl', 'r') as f:
            for line in f:
                model = json.loads(line)
                model_data[model['name']] = {
                    'organization': model['organization'],
                    'license': model['license'],
                    'api_model': model['api_model']
                }
    except FileNotFoundError:
        print("Warning: models.jsonl not found")
        return {}
    return model_data

model_data = load_model_data()

current_session_id = 0
voting_data = []

def get_new_session_id():
    global current_session_id
    current_session_id += 1
    return f"user{current_session_id}"

def store_vote_data(prompt, response_a, response_b, model_a, model_b, winner, judge_id):
    vote_entry = {
        "timestamp": datetime.now().isoformat(),
        "prompt": prompt,
        "response_a": response_a,
        "response_b": response_b,
        "model_a": model_a,
        "model_b": model_b,
        "winner": winner,
        "judge_id": judge_id,
    }
    voting_data.append(vote_entry)
    
    # Save to file after each vote
    with open('voting_data.json', 'w') as f:
        json.dump(voting_data, f, indent=2)

def parse_variables(prompt):
    # Extract variables enclosed in double curly braces
    variables = re.findall(r'{{(.*?)}}', prompt)
    # Remove duplicates while preserving order
    seen = set()
    variables = [x.strip() for x in variables if not (x.strip() in seen or seen.add(x.strip()))]
    return variables

def get_final_prompt(eval_prompt, variable_values):
    # Replace variables in the eval prompt with their values
    for var, val in variable_values.items():
        eval_prompt = eval_prompt.replace('{{' + var + '}}', val)
    return eval_prompt

def submit_prompt(eval_prompt, *variable_values):
    try:
        variables = parse_variables(eval_prompt)
        variable_values_dict = {var: val for var, val in zip(variables, variable_values)}
        final_prompt = get_final_prompt(eval_prompt, variable_values_dict)

        models = list(model_data.keys())
        model1, model2 = random.sample(models, 2)
        model_a, model_b = (model1, model2) if random.random() < 0.5 else (model2, model1)

        response_a = get_model_response(model_a, model_data.get(model_a), final_prompt)
        response_b = get_model_response(model_b, model_data.get(model_b), final_prompt)

        return (
            response_a,
            response_b,
            gr.update(visible=True),
            gr.update(visible=True),
            model_a,
            model_b
        )
    except Exception as e:
        print(f"Error in submit_prompt: {str(e)}")
        return (
            "Error generating response",
            "Error generating response",
            gr.update(visible=False),
            gr.update(visible=False),
            None,
            None
        )

def vote(choice, model_a, model_b, prompt, response_a, response_b, judge_id):
    # Update ELO scores based on user choice
    elo_a = elo_scores[model_a]
    elo_b = elo_scores[model_b]

    # Calculate expected scores
    Ea = 1 / (1 + 10 ** ((elo_b - elo_a) / 400))
    Eb = 1 / (1 + 10 ** ((elo_a - elo_b) / 400))

    # Assign actual scores
    if choice == 'A':
        Sa, Sb = 1, 0
    elif choice == 'B':
        Sa, Sb = 0, 1
    else:
        Sa, Sb = 0.5, 0.5

    # Update scores and vote counts
    elo_scores[model_a] += K_FACTOR * (Sa - Ea)
    elo_scores[model_b] += K_FACTOR * (Sb - Eb)
    vote_counts[model_a] += 1
    vote_counts[model_b] += 1

    # Store the vote data
    store_vote_data(prompt, response_a, response_b, model_a, model_b, choice, judge_id)

    # Return updates for UI components
    return {
        action_buttons_row: gr.update(visible=False),
        model_name_a: gr.update(value=f"*Model: {model_a}*"),
        model_name_b: gr.update(value=f"*Model: {model_b}*"),
        send_btn: gr.update(interactive=True),
        regenerate_button: gr.update(visible=True, interactive=True)
    }



def get_leaderboard():
    # Generate leaderboard data
    leaderboard = []
    for model, elo in elo_scores.items():
        votes = vote_counts[model]
        ci = 1.96 * (400 / (votes + 1) ** 0.5)  # Approximate 95% confidence interval
        data = {
            'Model': model,
            'ELO Score': f"{elo:.2f}",
            '95% CI': f"±{ci:.2f}",
            '# Votes': votes,
            'Organization': model_data[model]['organization'],
            'License': model_data[model]['license'],
        }
        leaderboard.append(data)
    # Sort by ELO score
    leaderboard.sort(key=lambda x: float(x['ELO Score']), reverse=True)
    return leaderboard

def regenerate_prompt(model_a, model_b, eval_prompt, *variable_values):
    variables = parse_variables(eval_prompt)
    variable_values_dict = {var: val for var, val in zip(variables, variable_values)}
    final_prompt = get_final_prompt(eval_prompt, variable_values_dict)

    # Get available models excluding the previous ones
    available_models = [m for m in model_data.keys() if m not in (model_a, model_b)]
    
    # If we have enough models for new pairs
    if len(available_models) >= 2:
        model1, model2 = random.sample(available_models, 2)
    else:
        # Fallback to allowing previous models if necessary
        model1, model2 = random.sample(list(model_data.keys()), 2)
    
    response_a = get_model_response(model1, model_data.get(model1), final_prompt)
    response_b = get_model_response(model2, model_data.get(model2), final_prompt)

    # Parse the responses
    score_a, critique_a = parse_model_response(response_a)
    score_b, critique_b = parse_model_response(response_b)

    return (
        score_a,              # score_a textbox
        critique_a,           # critique_a textbox
        score_b,              # score_b textbox
        critique_b,           # critique_b textbox
        gr.update(visible=True),  # action_buttons_row
        gr.update(value="*Model: Unknown*"),  # model_name_a
        gr.update(value="*Model: Unknown*"),  # model_name_b
        model1,              # model_a_state
        model2               # model_b_state
    )

def calculate_elo_change(rating_a, rating_b, winner):
    """Calculate ELO rating changes for both players."""
    expected_a = 1 / (1 + 10 ** ((rating_b - rating_a) / 400))
    expected_b = 1 - expected_a
    
    if winner == "A":
        score_a, score_b = 1, 0
    elif winner == "B":
        score_a, score_b = 0, 1
    else:  # Handle ties
        score_a, score_b = 0.5, 0.5
    
    change_a = K_FACTOR * (score_a - expected_a)
    change_b = K_FACTOR * (score_b - expected_b)
    
    return change_a, change_b

def update_leaderboard():
    """Calculate current ELO ratings from voting history."""
    ratings = defaultdict(lambda: DEFAULT_ELO)
    matches = defaultdict(int)
    wins = defaultdict(int)
    
    # Load voting data
    try:
        with open('voting_data.json', 'r') as f:
            voting_data = json.load(f)
    except FileNotFoundError:
        return pd.DataFrame()
    
    # Process each vote
    for vote in voting_data:
        model_a = vote['model_a']
        model_b = vote['model_b']
        winner = vote['winner']
        
        # Skip if models aren't in current model_data
        if model_a not in model_data or model_b not in model_data:
            continue
        
        # Update match counts
        matches[model_a] += 1
        matches[model_b] += 1
        if winner == "A":
            wins[model_a] += 1
        elif winner == "B":
            wins[model_b] += 1
        else:  # Handle ties
            wins[model_a] += 0.5
            wins[model_b] += 0.5
        
        # Update ELO ratings
        change_a, change_b = calculate_elo_change(ratings[model_a], ratings[model_b], winner)
        ratings[model_a] += change_a
        ratings[model_b] += change_b
    
    # Create leaderboard DataFrame
    leaderboard_data = []
    for model in model_data.keys():  # Only include current models
        win_rate = (wins[model] / matches[model] * 100) if matches[model] > 0 else 0
        ci = 1.96 * (400 / (matches[model] + 1) ** 0.5) if matches[model] > 0 else 0  # Confidence interval
        leaderboard_data.append({
            'Model': model,
            'ELO': round(ratings[model], 1),
            '95% CI': f"±{ci:.1f}",
            'Matches': matches[model],
            'Win Rate': f"{win_rate:.1f}%",
            'Organization': model_data[model]['organization'],
            'License': model_data[model]['license']
        })
    
    # Sort by ELO rating
    df = pd.DataFrame(leaderboard_data)
    return df.sort_values('ELO', ascending=False).reset_index(drop=True)

# Update the display_leaderboard function
def display_leaderboard():
    df = update_leaderboard()
    return gr.DataFrame(
        value=df,
        headers=['Model', 'ELO', '95% CI', 'Matches', 'Organization', 'License'],
        datatype=['str', 'number', 'str', 'number', 'str', 'str', 'str'],
        row_count=(len(df) + 1, 'dynamic'),
    )

# Update the leaderboard table definition in the UI
leaderboard_table = gr.Dataframe(
    headers=['Model', 'ELO', '95% CI', 'Matches', 'Organization', 'License'],
    datatype=['str', 'number', 'str', 'number', 'str', 'str', 'str']
)

def get_leaderboard_stats():
    """Get summary statistics for the leaderboard."""
    try:
        with open('voting_data.json', 'r') as f:
            voting_data = json.load(f)
        
        total_votes = len(voting_data)
        total_models = len(model_data)
        last_updated = datetime.now().strftime("%Y-%m-%d %H:%M:%S UTC")
        
        return f"""
### Leaderboard Stats
- **Total Models**: {total_models}
- **Total Votes**: {total_votes}
- **Last Updated**: {last_updated}
"""
    except FileNotFoundError:
        return "No voting data available"

def initialize_voting_data():
    """Initialize or clear the voting data file."""
    empty_data = []
    with open('voting_data.json', 'w') as f:
        json.dump(empty_data, f)

# Add this near the start of your app initialization, before the Gradio interface setup
if __name__ == "__main__":
    initialize_voting_data()
    
    # ... rest of your Gradio app setup ...

# Example evaluation metrics data
EXAMPLE_METRICS = {
    "Hallucination": {
        "prompt": DEFAULT_EVAL_PROMPT,  # We'll replace these with actual examples
        "input": DEFAULT_INPUT,
        "response": DEFAULT_RESPONSE
    },
    "Precision": {
        "prompt": DEFAULT_EVAL_PROMPT,
        "input": DEFAULT_INPUT,
        "response": DEFAULT_RESPONSE
    },
    "Recall": {
        "prompt": DEFAULT_EVAL_PROMPT,
        "input": DEFAULT_INPUT,
        "response": DEFAULT_RESPONSE
    },
    "Logical coherence": {
        "prompt": DEFAULT_EVAL_PROMPT,
        "input": DEFAULT_INPUT,
        "response": DEFAULT_RESPONSE
    },
    "Faithfulness": {
        "prompt": DEFAULT_EVAL_PROMPT,
        "input": DEFAULT_INPUT,
        "response": DEFAULT_RESPONSE
    }
}

def set_example_metric(metric_name):
    if metric_name == "Custom":
        return [
            DEFAULT_EVAL_PROMPT,
            DEFAULT_INPUT,
            DEFAULT_RESPONSE
        ]
    
    metric_data = EXAMPLE_METRICS[metric_name]
    return [
        metric_data["prompt"],
        metric_data["input"],
        metric_data["response"]
    ]

# Select random metric at startup
def get_random_metric():
    metrics = list(EXAMPLE_METRICS.keys())
    return set_example_metric(random.choice(metrics))

with gr.Blocks(theme='default', css=CSS_STYLES) as demo:
    judge_id = gr.State(get_new_session_id())
    gr.Markdown(MAIN_TITLE)
    gr.Markdown(HOW_IT_WORKS)
    
    with gr.Tabs():
        with gr.TabItem("Judge Arena"):
            
            with gr.Row():
                with gr.Column():
                    gr.Markdown(BATTLE_RULES)
                    gr.Markdown(EVAL_DESCRIPTION)
            
            # Add Example Metrics Section
            with gr.Accordion("Example evaluation metrics", open=True):
                with gr.Row():
                    custom_btn = gr.Button("Custom", variant="secondary")
                    hallucination_btn = gr.Button("Hallucination")
                    precision_btn = gr.Button("Precision")
                    recall_btn = gr.Button("Recall")
                    coherence_btn = gr.Button("Logical coherence")
                    faithfulness_btn = gr.Button("Faithfulness")

            # Eval Prompt and Variables side by side
            with gr.Row():
                # Left column - Eval Prompt
                with gr.Column(scale=1):
                    eval_prompt = gr.TextArea(
                        label="Evaluator Prompt",
                        lines=1,
                        value=DEFAULT_EVAL_PROMPT,
                        placeholder="Type your eval prompt here... denote variables in {{curly brackets}} to be populated on the right.",
                        show_label=True
                    )

                # Right column - Variable Mapping
                with gr.Column(scale=1):
                    gr.Markdown("### Sample to test the evaluator")
                    # Create inputs for up to 5 variables, with first two visible by default
                    variable_rows = []
                    for i in range(5):
                        initial_visibility = True if i < 2 else False
                        with gr.Group(visible=initial_visibility) as var_row:
                            # Variable input with direct label
                            initial_value = DEFAULT_INPUT if i == 0 else DEFAULT_RESPONSE
                            initial_label = "input" if i == 0 else "response" if i == 1 else f"variable_{i+1}"
                            var_input = gr.Textbox(
                                label=initial_label,
                                value=initial_value,
                                container=True
                            )
                            variable_rows.append((var_row, var_input))

            # Send button
            with gr.Row(elem_classes="send-button-row"):
                send_btn = gr.Button(
                    value="Test the evaluators",
                    variant="primary",
                    size="lg",
                    scale=1
                )
            
            # Add divider heading for model outputs
            gr.Markdown(VOTING_HEADER)
            
            # Model Responses side-by-side
            with gr.Row():
                with gr.Column():
                    gr.Markdown("### Model A")
                    score_a = gr.Textbox(label="Score", interactive=False)
                    critique_a = gr.TextArea(label="Critique", lines=8, interactive=False)
                    model_name_a = gr.Markdown("*Model: Unknown*")
                with gr.Column():
                    gr.Markdown("### Model B")
                    score_b = gr.Textbox(label="Score", interactive=False)
                    critique_b = gr.TextArea(label="Critique", lines=8, interactive=False)
                    model_name_b = gr.Markdown("*Model: Unknown*")
            
            # Initially hide vote buttons and regenerate button
            with gr.Row(visible=False) as action_buttons_row:
                vote_a = gr.Button("Choose A", variant="primary")
                vote_tie = gr.Button("Tie", variant="secondary")
                vote_b = gr.Button("Choose B", variant="primary")
            regenerate_button = gr.Button("Regenerate with different models", variant="secondary", visible=False)
            
            # Add spacing and acknowledgements at the bottom
            gr.Markdown(ACKNOWLEDGEMENTS)

        with gr.TabItem("Leaderboard"):
            refresh_button = gr.Button("Refresh")
            stats_display = gr.Markdown()
            leaderboard_table = gr.Dataframe(
                headers=['Model', 'ELO', '95% CI', 'Matches', 'Organization', 'License'],
                datatype=['str', 'number', 'str', 'number', 'str', 'str']
            )

        with gr.TabItem("Policy"):
            gr.Markdown(POLICY_CONTENT)

    # Define state variables for model tracking
    model_a_state = gr.State()
    model_b_state = gr.State()

    # Update variable inputs based on the eval prompt
    def update_variables(eval_prompt):
        variables = parse_variables(eval_prompt)
        updates = []
        for i in range(5):
            var_row, var_input = variable_rows[i]
            if i < len(variables):
                # Set default values for 'input' and 'response', otherwise leave empty
                if variables[i] == "input":
                    initial_value = DEFAULT_INPUT
                elif variables[i] == "response":
                    initial_value = DEFAULT_RESPONSE
                else:
                    initial_value = ""  # Empty for new variables

                updates.extend([
                    gr.update(visible=True),  # var_row
                    gr.update(value=initial_value, label=variables[i], visible=True)  # var_input with dynamic label
                ])
            else:
                updates.extend([
                    gr.update(visible=False),  # var_row
                    gr.update(value="", visible=False)  # var_input
                ])
        return updates

    eval_prompt.change(fn=update_variables, inputs=eval_prompt, outputs=[item for sublist in variable_rows for item in sublist])

    # Regenerate button functionality
    regenerate_button.click(
        fn=regenerate_prompt,
        inputs=[model_a_state, model_b_state, eval_prompt] + [var_input for _, var_input in variable_rows],
        outputs=[
            score_a,
            critique_a,
            score_b,
            critique_b,
            action_buttons_row,
            model_name_a,
            model_name_b,
            model_a_state,
            model_b_state
        ]
    )

    # Update model names after responses are generated
    def update_model_names(model_a, model_b):
        return gr.update(value=f"*Model: {model_a}*"), gr.update(value=f"*Model: {model_b}*")

    # Store the last submitted prompt and variables for comparison
    last_submission = gr.State({})


    # Update the vote button click handlers
    vote_a.click(
        fn=lambda *args: vote('A', *args),
        inputs=[model_a_state, model_b_state, eval_prompt, score_a, score_b, judge_id],
        outputs=[action_buttons_row, model_name_a, model_name_b, send_btn, regenerate_button]
    )

    vote_b.click(
        fn=lambda *args: vote('B', *args),
        inputs=[model_a_state, model_b_state, eval_prompt, score_a, score_b, judge_id],
        outputs=[action_buttons_row, model_name_a, model_name_b, send_btn, regenerate_button]
    )

    vote_tie.click(
        fn=lambda *args: vote('Tie', *args),
        inputs=[model_a_state, model_b_state, eval_prompt, score_a, score_b, judge_id],
        outputs=[action_buttons_row, model_name_a, model_name_b, send_btn, regenerate_button]
    )

    # Update the send button handler to store the submitted inputs
    def submit_and_store(prompt, *variables):
        # Create a copy of the current submission
        current_submission = {"prompt": prompt, "variables": variables}
        
        # Get the responses
        response_a, response_b, buttons_visible, regen_visible, model_a, model_b = submit_prompt(prompt, *variables)
        
        # Parse the responses
        score_a, critique_a = parse_model_response(response_a)
        score_b, critique_b = parse_model_response(response_b)
        
        # Update the last_submission state with the current values
        last_submission.value = current_submission
        
        return (
            score_a,
            critique_a,
            score_b,
            critique_b,
            buttons_visible,
            gr.update(visible=True, interactive=True),  # Show and enable regenerate button
            model_a,
            model_b,
            gr.update(value="*Model: Unknown*"),
            gr.update(value="*Model: Unknown*")
        )

    send_btn.click(
        fn=submit_and_store,
        inputs=[eval_prompt] + [var_input for _, var_input in variable_rows],
        outputs=[
            score_a,
            critique_a,
            score_b,
            critique_b,
            action_buttons_row,
            regenerate_button,
            model_a_state,
            model_b_state,
            model_name_a,    # Add model name outputs
            model_name_b
        ]
    )

    # Update the input change handlers to also disable regenerate button
    def handle_input_changes(prompt, *variables):
        """Enable send button and manage regenerate button based on input changes"""
        last_inputs = last_submission.value
        current_inputs = {"prompt": prompt, "variables": variables}
        inputs_changed = last_inputs != current_inputs
        return [
            gr.update(interactive=True),                    # send button always enabled
            gr.update(interactive=not inputs_changed)       # regenerate button disabled if inputs changed
        ]

    # Update the change handlers for prompt and variables
    eval_prompt.change(
        fn=handle_input_changes,
        inputs=[eval_prompt] + [var_input for _, var_input in variable_rows],
        outputs=[send_btn, regenerate_button]
    )

    for _, var_input in variable_rows:
        var_input.change(
            fn=handle_input_changes,
            inputs=[eval_prompt] + [var_input for _, var_input in variable_rows],
            outputs=[send_btn, regenerate_button]
        )

    # Update the leaderboard
    def refresh_leaderboard():
        leaderboard = get_leaderboard()
        data = [
            [
                entry['Model'],
                float(entry['ELO Score']),
                entry['95% CI'],
                entry['# Votes'],
                entry['Organization'],
                entry['License']
            ] for entry in leaderboard
        ]
        stats = get_leaderboard_stats()
        return [gr.update(value=data), gr.update(value=stats)]

    refresh_button.click(
        fn=refresh_leaderboard,
        inputs=None,
        outputs=[leaderboard_table, stats_display]
    )

    # Add the load event at the very end, just before demo.launch()
    demo.load(
        fn=refresh_leaderboard,
        inputs=None,
        outputs=[leaderboard_table, stats_display]
    )

    # Add click handlers for metric buttons
    custom_btn.click(
        fn=lambda: set_example_metric("Custom"),
        outputs=[eval_prompt, variable_rows[0][1], variable_rows[1][1]]
    )

    hallucination_btn.click(
        fn=lambda: set_example_metric("Hallucination"),
        outputs=[eval_prompt, variable_rows[0][1], variable_rows[1][1]]
    )

    precision_btn.click(
        fn=lambda: set_example_metric("Precision"),
        outputs=[eval_prompt, variable_rows[0][1], variable_rows[1][1]]
    )

    recall_btn.click(
        fn=lambda: set_example_metric("Recall"),
        outputs=[eval_prompt, variable_rows[0][1], variable_rows[1][1]]
    )

    coherence_btn.click(
        fn=lambda: set_example_metric("Logical coherence"),
        outputs=[eval_prompt, variable_rows[0][1], variable_rows[1][1]]
    )

    faithfulness_btn.click(
        fn=lambda: set_example_metric("Faithfulness"),
        outputs=[eval_prompt, variable_rows[0][1], variable_rows[1][1]]
    )

    # Set random metric at startup
    demo.load(
        fn=get_random_metric,
        outputs=[eval_prompt, variable_rows[0][1], variable_rows[1][1]]
    )

demo.launch()