Spaces:
Running
Running
File size: 24,225 Bytes
dbd97ea 6f46699 7af825c dbd97ea 7af825c dbd97ea 7af825c dbd97ea 7af825c dbd97ea 7af825c dbd97ea 7af825c dbd97ea 7af825c dbd97ea 7af825c dbd97ea 7af825c dbd97ea 7af825c dbd97ea 7af825c 00e2ba1 b58e0f1 00e2ba1 b58e0f1 00e2ba1 b58e0f1 00e2ba1 7af825c dbd97ea 7af825c c29f61a dbd97ea 7af825c c29f61a 7af825c 00e2ba1 7af825c c29f61a 7af825c 35c02ea 7af825c c29f61a 7af825c c29f61a 7af825c dbd97ea 7af825c dbd97ea 7af825c dbd97ea 7af825c dbd97ea 7af825c dbd97ea 7af825c dbd97ea 7af825c dbd97ea 35c02ea dbd97ea 35c02ea dbd97ea 35c02ea dbd97ea 7af825c dbd97ea 022688b dbd97ea 022688b dbd97ea 022688b dbd97ea 7af825c dbd97ea 7af825c dbd97ea 7af825c dbd97ea 7af825c dbd97ea 7af825c dbd97ea 7af825c dbd97ea 7af825c dbd97ea 7af825c dbd97ea 7af825c dbd97ea 7af825c dbd97ea b58e0f1 00e2ba1 b58e0f1 00e2ba1 b58e0f1 00e2ba1 b58e0f1 00e2ba1 b58e0f1 00e2ba1 b58e0f1 00e2ba1 b58e0f1 00e2ba1 7af825c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 |
from datetime import datetime
import json
import gradio as gr
import re
import random
from collections import defaultdict
import pandas as pd
import os
from gen_api_answer import get_model_response, parse_model_response
from common import *
# Model and ELO score data
DEFAULT_ELO = 1500 # Starting ELO for new models
K_FACTOR = 32 # Standard chess K-factor, adjust as needed
elo_scores = defaultdict(lambda: DEFAULT_ELO)
vote_counts = defaultdict(int)
# Load the model_data from JSONL
def load_model_data():
model_data = {}
try:
with open('data/models.jsonl', 'r') as f:
for line in f:
model = json.loads(line)
model_data[model['name']] = {
'organization': model['organization'],
'license': model['license'],
'api_model': model['api_model']
}
except FileNotFoundError:
print("Warning: models.jsonl not found")
return {}
return model_data
model_data = load_model_data()
current_session_id = 0
voting_data = []
def get_new_session_id():
global current_session_id
current_session_id += 1
return f"user{current_session_id}"
def store_vote_data(prompt, response_a, response_b, model_a, model_b, winner, judge_id):
vote_entry = {
"timestamp": datetime.now().isoformat(),
"prompt": prompt,
"response_a": response_a,
"response_b": response_b,
"model_a": model_a,
"model_b": model_b,
"winner": winner,
"judge_id": judge_id,
}
voting_data.append(vote_entry)
# Save to file after each vote
with open('voting_data.json', 'w') as f:
json.dump(voting_data, f, indent=2)
def parse_variables(prompt):
# Extract variables enclosed in double curly braces
variables = re.findall(r'{{(.*?)}}', prompt)
# Remove duplicates while preserving order
seen = set()
variables = [x.strip() for x in variables if not (x.strip() in seen or seen.add(x.strip()))]
return variables
def get_final_prompt(eval_prompt, variable_values):
# Replace variables in the eval prompt with their values
for var, val in variable_values.items():
eval_prompt = eval_prompt.replace('{{' + var + '}}', val)
return eval_prompt
def submit_prompt(eval_prompt, *variable_values):
try:
variables = parse_variables(eval_prompt)
variable_values_dict = {var: val for var, val in zip(variables, variable_values)}
final_prompt = get_final_prompt(eval_prompt, variable_values_dict)
models = list(model_data.keys())
model1, model2 = random.sample(models, 2)
model_a, model_b = (model1, model2) if random.random() < 0.5 else (model2, model1)
response_a = get_model_response(model_a, model_data.get(model_a), final_prompt)
response_b = get_model_response(model_b, model_data.get(model_b), final_prompt)
return (
response_a,
response_b,
gr.update(visible=True),
gr.update(visible=True),
model_a,
model_b
)
except Exception as e:
print(f"Error in submit_prompt: {str(e)}")
return (
"Error generating response",
"Error generating response",
gr.update(visible=False),
gr.update(visible=False),
None,
None
)
def vote(choice, model_a, model_b, prompt, response_a, response_b, judge_id):
# Update ELO scores based on user choice
elo_a = elo_scores[model_a]
elo_b = elo_scores[model_b]
# Calculate expected scores
Ea = 1 / (1 + 10 ** ((elo_b - elo_a) / 400))
Eb = 1 / (1 + 10 ** ((elo_a - elo_b) / 400))
# Assign actual scores
if choice == 'A':
Sa, Sb = 1, 0
elif choice == 'B':
Sa, Sb = 0, 1
else:
Sa, Sb = 0.5, 0.5
# Update scores and vote counts
elo_scores[model_a] += K_FACTOR * (Sa - Ea)
elo_scores[model_b] += K_FACTOR * (Sb - Eb)
vote_counts[model_a] += 1
vote_counts[model_b] += 1
# Store the vote data
store_vote_data(prompt, response_a, response_b, model_a, model_b, choice, judge_id)
# Return updates for UI components
return {
action_buttons_row: gr.update(visible=False),
model_name_a: gr.update(value=f"*Model: {model_a}*"),
model_name_b: gr.update(value=f"*Model: {model_b}*"),
send_btn: gr.update(interactive=True),
regenerate_button: gr.update(visible=True, interactive=True)
}
def get_leaderboard():
# Generate leaderboard data
leaderboard = []
for model, elo in elo_scores.items():
votes = vote_counts[model]
ci = 1.96 * (400 / (votes + 1) ** 0.5) # Approximate 95% confidence interval
data = {
'Model': model,
'ELO Score': f"{elo:.2f}",
'95% CI': f"±{ci:.2f}",
'# Votes': votes,
'Organization': model_data[model]['organization'],
'License': model_data[model]['license'],
}
leaderboard.append(data)
# Sort by ELO score
leaderboard.sort(key=lambda x: float(x['ELO Score']), reverse=True)
return leaderboard
def regenerate_prompt(model_a, model_b, eval_prompt, *variable_values):
variables = parse_variables(eval_prompt)
variable_values_dict = {var: val for var, val in zip(variables, variable_values)}
final_prompt = get_final_prompt(eval_prompt, variable_values_dict)
# Get available models excluding the previous ones
available_models = [m for m in model_data.keys() if m not in (model_a, model_b)]
# If we have enough models for new pairs
if len(available_models) >= 2:
model1, model2 = random.sample(available_models, 2)
else:
# Fallback to allowing previous models if necessary
model1, model2 = random.sample(list(model_data.keys()), 2)
response_a = get_model_response(model1, model_data.get(model1), final_prompt)
response_b = get_model_response(model2, model_data.get(model2), final_prompt)
# Parse the responses
score_a, critique_a = parse_model_response(response_a)
score_b, critique_b = parse_model_response(response_b)
return (
score_a, # score_a textbox
critique_a, # critique_a textbox
score_b, # score_b textbox
critique_b, # critique_b textbox
gr.update(visible=True), # action_buttons_row
gr.update(value="*Model: Unknown*"), # model_name_a
gr.update(value="*Model: Unknown*"), # model_name_b
model1, # model_a_state
model2 # model_b_state
)
def calculate_elo_change(rating_a, rating_b, winner):
"""Calculate ELO rating changes for both players."""
expected_a = 1 / (1 + 10 ** ((rating_b - rating_a) / 400))
expected_b = 1 - expected_a
if winner == "A":
score_a, score_b = 1, 0
elif winner == "B":
score_a, score_b = 0, 1
else: # Handle ties
score_a, score_b = 0.5, 0.5
change_a = K_FACTOR * (score_a - expected_a)
change_b = K_FACTOR * (score_b - expected_b)
return change_a, change_b
def update_leaderboard():
"""Calculate current ELO ratings from voting history."""
ratings = defaultdict(lambda: DEFAULT_ELO)
matches = defaultdict(int)
wins = defaultdict(int)
# Load voting data
try:
with open('voting_data.json', 'r') as f:
voting_data = json.load(f)
except FileNotFoundError:
return pd.DataFrame()
# Process each vote
for vote in voting_data:
model_a = vote['model_a']
model_b = vote['model_b']
winner = vote['winner']
# Skip if models aren't in current model_data
if model_a not in model_data or model_b not in model_data:
continue
# Update match counts
matches[model_a] += 1
matches[model_b] += 1
if winner == "A":
wins[model_a] += 1
elif winner == "B":
wins[model_b] += 1
else: # Handle ties
wins[model_a] += 0.5
wins[model_b] += 0.5
# Update ELO ratings
change_a, change_b = calculate_elo_change(ratings[model_a], ratings[model_b], winner)
ratings[model_a] += change_a
ratings[model_b] += change_b
# Create leaderboard DataFrame
leaderboard_data = []
for model in model_data.keys(): # Only include current models
win_rate = (wins[model] / matches[model] * 100) if matches[model] > 0 else 0
ci = 1.96 * (400 / (matches[model] + 1) ** 0.5) if matches[model] > 0 else 0 # Confidence interval
leaderboard_data.append({
'Model': model,
'ELO': round(ratings[model], 1),
'95% CI': f"±{ci:.1f}",
'Matches': matches[model],
'Win Rate': f"{win_rate:.1f}%",
'Organization': model_data[model]['organization'],
'License': model_data[model]['license']
})
# Sort by ELO rating
df = pd.DataFrame(leaderboard_data)
return df.sort_values('ELO', ascending=False).reset_index(drop=True)
# Update the display_leaderboard function
def display_leaderboard():
df = update_leaderboard()
return gr.DataFrame(
value=df,
headers=['Model', 'ELO', '95% CI', 'Matches', 'Organization', 'License'],
datatype=['str', 'number', 'str', 'number', 'str', 'str', 'str'],
row_count=(len(df) + 1, 'dynamic'),
)
# Update the leaderboard table definition in the UI
leaderboard_table = gr.Dataframe(
headers=['Model', 'ELO', '95% CI', 'Matches', 'Organization', 'License'],
datatype=['str', 'number', 'str', 'number', 'str', 'str', 'str']
)
def get_leaderboard_stats():
"""Get summary statistics for the leaderboard."""
try:
with open('voting_data.json', 'r') as f:
voting_data = json.load(f)
total_votes = len(voting_data)
total_models = len(model_data)
last_updated = datetime.now().strftime("%Y-%m-%d %H:%M:%S UTC")
return f"""
### Leaderboard Stats
- **Total Models**: {total_models}
- **Total Votes**: {total_votes}
- **Last Updated**: {last_updated}
"""
except FileNotFoundError:
return "No voting data available"
def initialize_voting_data():
"""Initialize or clear the voting data file."""
empty_data = []
with open('voting_data.json', 'w') as f:
json.dump(empty_data, f)
# Add this near the start of your app initialization, before the Gradio interface setup
if __name__ == "__main__":
initialize_voting_data()
# ... rest of your Gradio app setup ...
# Example evaluation metrics data
EXAMPLE_METRICS = {
"Hallucination": {
"prompt": DEFAULT_EVAL_PROMPT, # We'll replace these with actual examples
"input": DEFAULT_INPUT,
"response": DEFAULT_RESPONSE
},
"Precision": {
"prompt": DEFAULT_EVAL_PROMPT,
"input": DEFAULT_INPUT,
"response": DEFAULT_RESPONSE
},
"Recall": {
"prompt": DEFAULT_EVAL_PROMPT,
"input": DEFAULT_INPUT,
"response": DEFAULT_RESPONSE
},
"Logical coherence": {
"prompt": DEFAULT_EVAL_PROMPT,
"input": DEFAULT_INPUT,
"response": DEFAULT_RESPONSE
},
"Faithfulness": {
"prompt": DEFAULT_EVAL_PROMPT,
"input": DEFAULT_INPUT,
"response": DEFAULT_RESPONSE
}
}
def set_example_metric(metric_name):
if metric_name == "Custom":
return [
DEFAULT_EVAL_PROMPT,
DEFAULT_INPUT,
DEFAULT_RESPONSE
]
metric_data = EXAMPLE_METRICS[metric_name]
return [
metric_data["prompt"],
metric_data["input"],
metric_data["response"]
]
# Select random metric at startup
def get_random_metric():
metrics = list(EXAMPLE_METRICS.keys())
return set_example_metric(random.choice(metrics))
with gr.Blocks(theme='default', css=CSS_STYLES) as demo:
judge_id = gr.State(get_new_session_id())
gr.Markdown(MAIN_TITLE)
gr.Markdown(HOW_IT_WORKS)
with gr.Tabs():
with gr.TabItem("Judge Arena"):
with gr.Row():
with gr.Column():
gr.Markdown(BATTLE_RULES)
gr.Markdown(EVAL_DESCRIPTION)
# Add Example Metrics Section
with gr.Accordion("Example evaluation metrics", open=True):
with gr.Row():
custom_btn = gr.Button("Custom", variant="secondary")
hallucination_btn = gr.Button("Hallucination")
precision_btn = gr.Button("Precision")
recall_btn = gr.Button("Recall")
coherence_btn = gr.Button("Logical coherence")
faithfulness_btn = gr.Button("Faithfulness")
# Eval Prompt and Variables side by side
with gr.Row():
# Left column - Eval Prompt
with gr.Column(scale=1):
eval_prompt = gr.TextArea(
label="Evaluator Prompt",
lines=1,
value=DEFAULT_EVAL_PROMPT,
placeholder="Type your eval prompt here... denote variables in {{curly brackets}} to be populated on the right.",
show_label=True
)
# Right column - Variable Mapping
with gr.Column(scale=1):
gr.Markdown("### Sample to test the evaluator")
# Create inputs for up to 5 variables, with first two visible by default
variable_rows = []
for i in range(5):
initial_visibility = True if i < 2 else False
with gr.Group(visible=initial_visibility) as var_row:
# Variable input with direct label
initial_value = DEFAULT_INPUT if i == 0 else DEFAULT_RESPONSE
initial_label = "input" if i == 0 else "response" if i == 1 else f"variable_{i+1}"
var_input = gr.Textbox(
label=initial_label,
value=initial_value,
container=True
)
variable_rows.append((var_row, var_input))
# Send button
with gr.Row(elem_classes="send-button-row"):
send_btn = gr.Button(
value="Test the evaluators",
variant="primary",
size="lg",
scale=1
)
# Add divider heading for model outputs
gr.Markdown(VOTING_HEADER)
# Model Responses side-by-side
with gr.Row():
with gr.Column():
gr.Markdown("### Model A")
score_a = gr.Textbox(label="Score", interactive=False)
critique_a = gr.TextArea(label="Critique", lines=8, interactive=False)
model_name_a = gr.Markdown("*Model: Unknown*")
with gr.Column():
gr.Markdown("### Model B")
score_b = gr.Textbox(label="Score", interactive=False)
critique_b = gr.TextArea(label="Critique", lines=8, interactive=False)
model_name_b = gr.Markdown("*Model: Unknown*")
# Initially hide vote buttons and regenerate button
with gr.Row(visible=False) as action_buttons_row:
vote_a = gr.Button("Choose A", variant="primary")
vote_tie = gr.Button("Tie", variant="secondary")
vote_b = gr.Button("Choose B", variant="primary")
regenerate_button = gr.Button("Regenerate with different models", variant="secondary", visible=False)
# Add spacing and acknowledgements at the bottom
gr.Markdown(ACKNOWLEDGEMENTS)
with gr.TabItem("Leaderboard"):
refresh_button = gr.Button("Refresh")
stats_display = gr.Markdown()
leaderboard_table = gr.Dataframe(
headers=['Model', 'ELO', '95% CI', 'Matches', 'Organization', 'License'],
datatype=['str', 'number', 'str', 'number', 'str', 'str']
)
with gr.TabItem("Policy"):
gr.Markdown(POLICY_CONTENT)
# Define state variables for model tracking
model_a_state = gr.State()
model_b_state = gr.State()
# Update variable inputs based on the eval prompt
def update_variables(eval_prompt):
variables = parse_variables(eval_prompt)
updates = []
for i in range(5):
var_row, var_input = variable_rows[i]
if i < len(variables):
# Set default values for 'input' and 'response', otherwise leave empty
if variables[i] == "input":
initial_value = DEFAULT_INPUT
elif variables[i] == "response":
initial_value = DEFAULT_RESPONSE
else:
initial_value = "" # Empty for new variables
updates.extend([
gr.update(visible=True), # var_row
gr.update(value=initial_value, label=variables[i], visible=True) # var_input with dynamic label
])
else:
updates.extend([
gr.update(visible=False), # var_row
gr.update(value="", visible=False) # var_input
])
return updates
eval_prompt.change(fn=update_variables, inputs=eval_prompt, outputs=[item for sublist in variable_rows for item in sublist])
# Regenerate button functionality
regenerate_button.click(
fn=regenerate_prompt,
inputs=[model_a_state, model_b_state, eval_prompt] + [var_input for _, var_input in variable_rows],
outputs=[
score_a,
critique_a,
score_b,
critique_b,
action_buttons_row,
model_name_a,
model_name_b,
model_a_state,
model_b_state
]
)
# Update model names after responses are generated
def update_model_names(model_a, model_b):
return gr.update(value=f"*Model: {model_a}*"), gr.update(value=f"*Model: {model_b}*")
# Store the last submitted prompt and variables for comparison
last_submission = gr.State({})
# Update the vote button click handlers
vote_a.click(
fn=lambda *args: vote('A', *args),
inputs=[model_a_state, model_b_state, eval_prompt, score_a, score_b, judge_id],
outputs=[action_buttons_row, model_name_a, model_name_b, send_btn, regenerate_button]
)
vote_b.click(
fn=lambda *args: vote('B', *args),
inputs=[model_a_state, model_b_state, eval_prompt, score_a, score_b, judge_id],
outputs=[action_buttons_row, model_name_a, model_name_b, send_btn, regenerate_button]
)
vote_tie.click(
fn=lambda *args: vote('Tie', *args),
inputs=[model_a_state, model_b_state, eval_prompt, score_a, score_b, judge_id],
outputs=[action_buttons_row, model_name_a, model_name_b, send_btn, regenerate_button]
)
# Update the send button handler to store the submitted inputs
def submit_and_store(prompt, *variables):
# Create a copy of the current submission
current_submission = {"prompt": prompt, "variables": variables}
# Get the responses
response_a, response_b, buttons_visible, regen_visible, model_a, model_b = submit_prompt(prompt, *variables)
# Parse the responses
score_a, critique_a = parse_model_response(response_a)
score_b, critique_b = parse_model_response(response_b)
# Update the last_submission state with the current values
last_submission.value = current_submission
return (
score_a,
critique_a,
score_b,
critique_b,
buttons_visible,
gr.update(visible=True, interactive=True), # Show and enable regenerate button
model_a,
model_b,
gr.update(value="*Model: Unknown*"),
gr.update(value="*Model: Unknown*")
)
send_btn.click(
fn=submit_and_store,
inputs=[eval_prompt] + [var_input for _, var_input in variable_rows],
outputs=[
score_a,
critique_a,
score_b,
critique_b,
action_buttons_row,
regenerate_button,
model_a_state,
model_b_state,
model_name_a, # Add model name outputs
model_name_b
]
)
# Update the input change handlers to also disable regenerate button
def handle_input_changes(prompt, *variables):
"""Enable send button and manage regenerate button based on input changes"""
last_inputs = last_submission.value
current_inputs = {"prompt": prompt, "variables": variables}
inputs_changed = last_inputs != current_inputs
return [
gr.update(interactive=True), # send button always enabled
gr.update(interactive=not inputs_changed) # regenerate button disabled if inputs changed
]
# Update the change handlers for prompt and variables
eval_prompt.change(
fn=handle_input_changes,
inputs=[eval_prompt] + [var_input for _, var_input in variable_rows],
outputs=[send_btn, regenerate_button]
)
for _, var_input in variable_rows:
var_input.change(
fn=handle_input_changes,
inputs=[eval_prompt] + [var_input for _, var_input in variable_rows],
outputs=[send_btn, regenerate_button]
)
# Update the leaderboard
def refresh_leaderboard():
leaderboard = get_leaderboard()
data = [
[
entry['Model'],
float(entry['ELO Score']),
entry['95% CI'],
entry['# Votes'],
entry['Organization'],
entry['License']
] for entry in leaderboard
]
stats = get_leaderboard_stats()
return [gr.update(value=data), gr.update(value=stats)]
refresh_button.click(
fn=refresh_leaderboard,
inputs=None,
outputs=[leaderboard_table, stats_display]
)
# Add the load event at the very end, just before demo.launch()
demo.load(
fn=refresh_leaderboard,
inputs=None,
outputs=[leaderboard_table, stats_display]
)
# Add click handlers for metric buttons
custom_btn.click(
fn=lambda: set_example_metric("Custom"),
outputs=[eval_prompt, variable_rows[0][1], variable_rows[1][1]]
)
hallucination_btn.click(
fn=lambda: set_example_metric("Hallucination"),
outputs=[eval_prompt, variable_rows[0][1], variable_rows[1][1]]
)
precision_btn.click(
fn=lambda: set_example_metric("Precision"),
outputs=[eval_prompt, variable_rows[0][1], variable_rows[1][1]]
)
recall_btn.click(
fn=lambda: set_example_metric("Recall"),
outputs=[eval_prompt, variable_rows[0][1], variable_rows[1][1]]
)
coherence_btn.click(
fn=lambda: set_example_metric("Logical coherence"),
outputs=[eval_prompt, variable_rows[0][1], variable_rows[1][1]]
)
faithfulness_btn.click(
fn=lambda: set_example_metric("Faithfulness"),
outputs=[eval_prompt, variable_rows[0][1], variable_rows[1][1]]
)
# Set random metric at startup
demo.load(
fn=get_random_metric,
outputs=[eval_prompt, variable_rows[0][1], variable_rows[1][1]]
)
demo.launch() |