File size: 8,502 Bytes
1f0c7b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b77f6e
 
 
 
 
1f0c7b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# import argparse
import os
# import shutil

# import torch

# from sklearn.metrics import roc_auc_score
from torch_geometric.loader import DataLoader
from torch_geometric.transforms import Compose

# import datetime, pytz

from core.config.config import Config, parse_config
from core.models.sbdd_train_loop import SBDDTrainLoop
from core.callbacks.basic import NormalizerCallback
from core.callbacks.validation_callback import (
    DockingTestCallback,
    OUT_DIR
)

import core.utils.transforms as trans
from core.datasets.utils import PDBProtein, parse_sdf_file
from core.datasets.pl_data import ProteinLigandData, torchify_dict
from core.datasets.pl_data import FOLLOW_BATCH

import pytorch_lightning as pl

from pytorch_lightning import seed_everything

# from absl import logging
# import glob

# from core.evaluation.utils import scoring_func
# from core.evaluation.docking_vina import VinaDockingTask
# from posecheck import PoseCheck
# import numpy as np
# from rdkit import Chem


def get_dataloader_from_pdb(cfg):
    assert cfg.evaluation.protein_path is not None and cfg.evaluation.ligand_path is not None
    protein_fn, ligand_fn = cfg.evaluation.protein_path, cfg.evaluation.ligand_path

    # load protein and ligand
    protein = PDBProtein(protein_fn)
    ligand_dict = parse_sdf_file(ligand_fn)
    lig_pos = ligand_dict["pos"]

    print('[DEBUG] get_dataloader')
    print(lig_pos.shape, lig_pos.mean(axis=0))

    pdb_block_pocket = protein.residues_to_pdb_block(
        protein.query_residues_ligand(ligand_dict, cfg.dynamics.net_config.r_max)
    )
    pocket = PDBProtein(pdb_block_pocket)
    pocket_dict = pocket.to_dict_atom()

    data = ProteinLigandData.from_protein_ligand_dicts(
        protein_dict=torchify_dict(pocket_dict),
        ligand_dict=torchify_dict(ligand_dict),
    )
    data.protein_filename = protein_fn
    data.ligand_filename = ligand_fn

    # transform
    protein_featurizer = trans.FeaturizeProteinAtom()
    ligand_featurizer = trans.FeaturizeLigandAtom(cfg.data.transform.ligand_atom_mode)
    transform_list = [
        protein_featurizer,
        ligand_featurizer,
    ]
    transform = Compose(transform_list)
    cfg.dynamics.protein_atom_feature_dim = protein_featurizer.feature_dim
    cfg.dynamics.ligand_atom_feature_dim = ligand_featurizer.feature_dim
    print(f"protein feature dim: {cfg.dynamics.protein_atom_feature_dim}, " +
            f"ligand feature dim: {cfg.dynamics.ligand_atom_feature_dim}")

    # dataloader
    collate_exclude_keys = ["ligand_nbh_list"]
    test_set = [transform(data)] * cfg.evaluation.num_samples
    cfg.evaluation.num_samples = 1
    test_loader = DataLoader(
        test_set,
        batch_size=cfg.evaluation.batch_size,
        shuffle=False,
        follow_batch=FOLLOW_BATCH,
        exclude_keys=collate_exclude_keys
    )

    cfg.evaluation.docking_config.protein_root = os.path.dirname(os.path.abspath(protein_fn))
    print(f"protein root: {cfg.evaluation.docking_config.protein_root}")

    return test_loader


def call(protein_fn, ligand_fn, 
         num_samples=10, sample_steps=100, sample_num_atoms='prior', 
         beta1=1.5, sigma1_coord=0.03, sampling_strategy='end_back', seed=1234):
    
    cfg = Config('./checkpoints/config.yaml')
    seed_everything(cfg.seed)
    
    cfg.evaluation.protein_path = protein_fn
    cfg.evaluation.ligand_path = ligand_fn
    cfg.test_only = True
    cfg.no_wandb = True
    cfg.evaluation.num_samples = num_samples
    cfg.evaluation.sample_steps = sample_steps
    cfg.evaluation.sample_num_atoms = sample_num_atoms # or 'prior'
    cfg.dynamics.beta1 = beta1
    cfg.dynamics.sigma1_coord = sigma1_coord
    cfg.dynamics.sampling_strategy = sampling_strategy
    cfg.seed = seed
    cfg.train.max_grad_norm = 'Q'

    # print(f"The config of this process is:\n{cfg}")

    print(protein_fn, ligand_fn)
    test_loader = get_dataloader_from_pdb(cfg)
    # wandb_logger.log_hyperparams(cfg.todict())

    model = SBDDTrainLoop(config=cfg)

    trainer = pl.Trainer(
        default_root_dir=cfg.accounting.logdir,
        max_epochs=cfg.train.epochs,
        check_val_every_n_epoch=cfg.train.ckpt_freq,
        devices=1,
        # logger=wandb_logger,
        num_sanity_val_steps=0,
        callbacks=[
            NormalizerCallback(normalizer_dict=cfg.data.normalizer_dict),
            DockingTestCallback(
                dataset=None,  # TODO: implement CrossDockGen & NewBenchmark
                atom_decoder=cfg.data.atom_decoder,
                atom_enc_mode=cfg.data.transform.ligand_atom_mode,
                atom_type_one_hot=False,
                single_bond=True,
                docking_config=cfg.evaluation.docking_config,
            ),
        ],
    )

    trainer.test(model, dataloaders=test_loader, ckpt_path=cfg.evaluation.ckpt_path)


class Metrics:
    def __init__(self, protein_fn, ref_ligand_fn, ligand_fn):
        self.protein_fn = protein_fn
        self.ref_ligand_fn = ref_ligand_fn
        self.ligand_fn = ligand_fn
        self.exhaustiveness = 16

    def vina_dock(self, mol):
        chem_results = {}

        try:
            # qed, logp, sa, lipinski, ring size, etc
            chem_results.update(scoring_func.get_chem(mol))
            chem_results['atom_num'] = mol.GetNumAtoms()

            # docking                
            vina_task = VinaDockingTask.from_generated_mol(
                mol, protein_filename=self.protein_fn)
            score_only_results = vina_task.run(mode='score_only', exhaustiveness=self.exhaustiveness)
            minimize_results = vina_task.run(mode='minimize', exhaustiveness=self.exhaustiveness)
            docking_results = vina_task.run(mode='dock', exhaustiveness=self.exhaustiveness)

            chem_results['vina_score'] = score_only_results[0]['affinity']
            chem_results['vina_minimize'] = minimize_results[0]['affinity']
            chem_results['vina_dock'] = docking_results[0]['affinity']
            # chem_results['vina_dock_pose'] = docking_results[0]['pose']

            return chem_results
        except Exception as e:
            print(e)
        
        return chem_results

    def pose_check(self, mol):
        pc = PoseCheck()

        pose_check_results = {}

        protein_ready = False
        try:
            pc.load_protein_from_pdb(self.protein_fn)
            protein_ready = True
        except ValueError as e:
            return pose_check_results

        ligand_ready = False
        try:
            pc.load_ligands_from_mols([mol])
            ligand_ready = True
        except ValueError as e:
            return pose_check_results

        if ligand_ready:
            try:
                strain = pc.calculate_strain_energy()[0]
                pose_check_results['strain'] = strain
            except Exception as e:
                pass

        if protein_ready and ligand_ready:
            try:
                clash = pc.calculate_clashes()[0]
                pose_check_results['clash'] = clash
            except Exception as e:
                pass

            try:
                df = pc.calculate_interactions()
                columns = np.array([column[2] for column in df.columns])
                flags = np.array([df[column][0] for column in df.columns])
                
                def count_inter(inter_type):
                    if len(columns) == 0:
                        return 0
                    count = sum((columns == inter_type) & flags)
                    return count

                # ['Hydrophobic', 'HBDonor', 'VdWContact', 'HBAcceptor']
                hb_donor = count_inter('HBDonor')
                hb_acceptor = count_inter('HBAcceptor')
                vdw = count_inter('VdWContact')
                hydrophobic = count_inter('Hydrophobic')

                pose_check_results['hb_donor'] = hb_donor
                pose_check_results['hb_acceptor'] = hb_acceptor
                pose_check_results['vdw'] = vdw
                pose_check_results['hydrophobic'] = hydrophobic
            except Exception as e:
                pass

        for k, v in pose_check_results.items():
            mol.SetProp(k, str(v))

        return pose_check_results
    
    def evaluate(self):
        mol = Chem.SDMolSupplier(self.ligand_fn, removeHs=False)[0]
       
        chem_results = self.vina_dock(mol)
        pose_check_results = self.pose_check(mol)
        chem_results.update(pose_check_results)

        return chem_results