LittleMusician / app.py
root
force sd to use cuda
a32d6c4
raw
history blame
2.07 kB
import torch
import spaces
import gradio as gr
from transformers import MusicgenForConditionalGeneration
music_gen_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
sampling_rate = music_gen_model.config.audio_encoder.sampling_rate
from transformers import AutoProcessor
processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
from diffusers import DiffusionPipeline
sd_pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
# sd_pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
@spaces.GPU
def generate_music(desc):
device = "cuda" if torch.cuda.is_available() else "cpu"
music_gen_model.to(device)
inputs = processor(text=[desc], padding=True, return_tensors="pt")
audio_values = music_gen_model.generate(**inputs.to(device), do_sample=True, guidance_scale=3, max_new_tokens=256)
return sampling_rate, audio_values[0][0].cpu().numpy()
@spaces.GPU
def generate_pic(desc):
device = "cuda" #if torch.cuda.is_available() else "cpu"
sd_pipe.to(device)
return sd_pipe(prompt=desc).images[0]
@spaces.GPU
def test_gpu():
device = "cuda" if torch.cuda.is_available() else "cpu"
return device
with gr.Blocks() as app:
with gr.Row():
music_desc = gr.TextArea(label="Music Description")
music_pic = gr.Image(label="Music Image(StableDiffusion)")
music_player = gr.Audio(label="Play My Tune")
device_name = gr.Text(label='device name', interactive=False)
gen_pic_btn = gr.Button("Gen Picture")
gen_music_btn = gr.Button("Get Some Tune!!")
has_gpu_btn = gr.Button("test gpu")
gen_pic_btn.click(fn=generate_pic, inputs=[music_desc], outputs=[music_pic])
gen_music_btn.click(fn=generate_music, inputs=[music_desc], outputs=[music_player])
has_gpu_btn.click(fn=test_gpu, outputs=[device_name])
if __name__ == '__main__':
app.launch()