File size: 6,042 Bytes
c3a1897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import itertools
import json
import os
from detectron2.structures import Boxes, BoxMode, pairwise_iou
from detectron2.utils.file_io import PathManager
import numpy as np
import pycocotools.mask as mask_util
from detectron2.evaluation.coco_evaluation import COCOEvaluator
from detectron2.evaluation.coco_evaluation import _evaluate_predictions_on_coco


class GRiTCOCOEvaluator(COCOEvaluator):
    def process(self, inputs, outputs):
        for input, output in zip(inputs, outputs):
            prediction = {"image_id": input["image_id"]}

            if "instances" in output:
                instances = output["instances"].to(self._cpu_device)
                prediction["instances"] = instances_to_coco_json(instances, input["image_id"])

            if len(prediction) > 1:
                self._predictions.append(prediction)

    def _eval_predictions(self, predictions, img_ids=None):
        self._logger.info("Preparing results for COCO format ...")
        coco_results = list(itertools.chain(*[x["instances"] for x in predictions]))
        tasks = self._tasks or self._tasks_from_predictions(coco_results)

        if self._output_dir:
            file_path = os.path.join(self._output_dir, "coco_instances_results.json")
            self._logger.info("Saving results to {}".format(file_path))
            with PathManager.open(file_path, "w") as f:
                f.write(json.dumps(coco_results))
                f.flush()

        if not self._do_evaluation:
            self._logger.info("Annotations are not available for evaluation.")
            return

        self._logger.info(
            "Evaluating predictions with {} COCO API...".format(
                "unofficial" if self._use_fast_impl else "official"
            )
        )

        coco_results = self.convert_classname_to_id(coco_results)

        for task in sorted(tasks):
            assert task in {"bbox", "segm", "keypoints"}, f"Got unknown task: {task}!"
            coco_eval = (
                _evaluate_predictions_on_coco(
                    self._coco_api,
                    coco_results,
                    task,
                    kpt_oks_sigmas=self._kpt_oks_sigmas,
                    use_fast_impl=self._use_fast_impl,
                    img_ids=img_ids,
                    max_dets_per_image=self._max_dets_per_image,
                )
                if len(coco_results) > 0
                else None  # cocoapi does not handle empty results very well
            )

            res = self._derive_coco_results(
                coco_eval, task, class_names=self._metadata.get("thing_classes")
            )
            self._results[task] = res

    def convert_classname_to_id(self, results):
        outputs = []
        class_name_to_id = {}
        categories = sorted(self._coco_api.dataset['categories'], key=lambda x: x['id'])

        for cat in categories:
            class_name_to_id[cat['name']] = cat['id']

        for pred in results:
            if pred['object_descriptions'] in class_name_to_id:
                pred['category_id'] = class_name_to_id[pred['object_descriptions']]
                del pred['object_descriptions']
                outputs.append(pred)

        return outputs


class GRiTVGEvaluator(COCOEvaluator):
    def process(self, inputs, outputs):
        for input, output in zip(inputs, outputs):
            assert input["image_id"] == int(input['file_name'].split('/')[-1].split('.')[0])
            prediction = {"image_id": input["image_id"]}

            if "instances" in output:
                instances = output["instances"].to(self._cpu_device)
                prediction["instances"] = instances_to_coco_json(instances, input["image_id"], output_logits=True)
                h = input['height']
                w = input['width']
                scale = 720.0 / max(h, w)
                scaled_inst = []
                for inst in prediction["instances"]:
                    inst['bbox'][0] = inst['bbox'][0] * scale
                    inst['bbox'][1] = inst['bbox'][1] * scale
                    inst['bbox'][2] = inst['bbox'][2] * scale
                    inst['bbox'][3] = inst['bbox'][3] * scale
                    scaled_inst.append(inst)
                if len(scaled_inst) > 0:
                    prediction["instances"] = scaled_inst
            if len(prediction) > 1:
                self._predictions.append(prediction)

    def _eval_predictions(self, predictions, img_ids=None):
        '''
        This is only for saving the results to json file
        '''
        self._logger.info("Preparing results for COCO format ...")
        coco_results = list(itertools.chain(*[x["instances"] for x in predictions]))

        if self._output_dir:
            file_path = os.path.join(self._output_dir, "vg_instances_results.json")
            self._logger.info("Saving results to {}".format(file_path))
            with PathManager.open(file_path, "w") as f:
                f.write(json.dumps(coco_results))
                f.flush()


def instances_to_coco_json(instances, img_id, output_logits=False):
    """
        Add object_descriptions and logit (if applicable) to
        detectron2's instances_to_coco_json
    """
    num_instance = len(instances)
    if num_instance == 0:
        return []

    boxes = instances.pred_boxes.tensor.numpy()
    boxes = BoxMode.convert(boxes, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
    boxes = boxes.tolist()
    scores = instances.scores.tolist()
    classes = instances.pred_classes.tolist()
    object_descriptions = instances.pred_object_descriptions.data
    if output_logits:
        logits = instances.logits.tolist()

    results = []
    for k in range(num_instance):
        result = {
            "image_id": img_id,
            "category_id": classes[k],
            "bbox": boxes[k],
            "score": scores[k],
            'object_descriptions': object_descriptions[k],
        }
        if output_logits:
            result["logit"] = logits[k]

        results.append(result)
    return results