Spaces:
Runtime error
Runtime error
File size: 6,782 Bytes
c3a1897 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import torch
from detectron2.structures import Boxes, RotatedBoxes, pairwise_iou, pairwise_iou_rotated
def soft_nms(boxes, scores, method, gaussian_sigma, linear_threshold, prune_threshold):
"""
Performs soft non-maximum suppression algorithm on axis aligned boxes
Args:
boxes (Tensor[N, 5]):
boxes where NMS will be performed. They
are expected to be in (x_ctr, y_ctr, width, height, angle_degrees) format
scores (Tensor[N]):
scores for each one of the boxes
method (str):
one of ['gaussian', 'linear', 'hard']
see paper for details. users encouraged not to use "hard", as this is the
same nms available elsewhere in detectron2
gaussian_sigma (float):
parameter for Gaussian penalty function
linear_threshold (float):
iou threshold for applying linear decay. Nt from the paper
re-used as threshold for standard "hard" nms
prune_threshold (float):
boxes with scores below this threshold are pruned at each iteration.
Dramatically reduces computation time. Authors use values in [10e-4, 10e-2]
Returns:
tuple(Tensor, Tensor):
[0]: int64 tensor with the indices of the elements that have been kept
by Soft NMS, sorted in decreasing order of scores
[1]: float tensor with the re-scored scores of the elements that were kept
"""
return _soft_nms(
Boxes,
pairwise_iou,
boxes,
scores,
method,
gaussian_sigma,
linear_threshold,
prune_threshold,
)
def batched_soft_nms(
boxes, scores, idxs, method, gaussian_sigma, linear_threshold, prune_threshold
):
"""
Performs soft non-maximum suppression in a batched fashion.
Each index value correspond to a category, and NMS
will not be applied between elements of different categories.
Args:
boxes (Tensor[N, 4]):
boxes where NMS will be performed. They
are expected to be in (x1, y1, x2, y2) format
scores (Tensor[N]):
scores for each one of the boxes
idxs (Tensor[N]):
indices of the categories for each one of the boxes.
method (str):
one of ['gaussian', 'linear', 'hard']
see paper for details. users encouraged not to use "hard", as this is the
same nms available elsewhere in detectron2
gaussian_sigma (float):
parameter for Gaussian penalty function
linear_threshold (float):
iou threshold for applying linear decay. Nt from the paper
re-used as threshold for standard "hard" nms
prune_threshold (float):
boxes with scores below this threshold are pruned at each iteration.
Dramatically reduces computation time. Authors use values in [10e-4, 10e-2]
Returns:
tuple(Tensor, Tensor):
[0]: int64 tensor with the indices of the elements that have been kept
by Soft NMS, sorted in decreasing order of scores
[1]: float tensor with the re-scored scores of the elements that were kept
"""
if boxes.numel() == 0:
return (
torch.empty((0,), dtype=torch.int64, device=boxes.device),
torch.empty((0,), dtype=torch.float32, device=scores.device),
)
# strategy: in order to perform NMS independently per class.
# we add an offset to all the boxes. The offset is dependent
# only on the class idx, and is large enough so that boxes
# from different classes do not overlap
max_coordinate = boxes.max()
offsets = idxs.to(boxes) * (max_coordinate + 1)
boxes_for_nms = boxes + offsets[:, None]
return soft_nms(
boxes_for_nms, scores, method, gaussian_sigma, linear_threshold, prune_threshold
)
def _soft_nms(
box_class,
pairwise_iou_func,
boxes,
scores,
method,
gaussian_sigma,
linear_threshold,
prune_threshold,
):
"""
Soft non-max suppression algorithm.
Implementation of [Soft-NMS -- Improving Object Detection With One Line of Codec]
(https://arxiv.org/abs/1704.04503)
Args:
box_class (cls): one of Box, RotatedBoxes
pairwise_iou_func (func): one of pairwise_iou, pairwise_iou_rotated
boxes (Tensor[N, ?]):
boxes where NMS will be performed
if Boxes, in (x1, y1, x2, y2) format
if RotatedBoxes, in (x_ctr, y_ctr, width, height, angle_degrees) format
scores (Tensor[N]):
scores for each one of the boxes
method (str):
one of ['gaussian', 'linear', 'hard']
see paper for details. users encouraged not to use "hard", as this is the
same nms available elsewhere in detectron2
gaussian_sigma (float):
parameter for Gaussian penalty function
linear_threshold (float):
iou threshold for applying linear decay. Nt from the paper
re-used as threshold for standard "hard" nms
prune_threshold (float):
boxes with scores below this threshold are pruned at each iteration.
Dramatically reduces computation time. Authors use values in [10e-4, 10e-2]
Returns:
tuple(Tensor, Tensor):
[0]: int64 tensor with the indices of the elements that have been kept
by Soft NMS, sorted in decreasing order of scores
[1]: float tensor with the re-scored scores of the elements that were kept
"""
boxes = boxes.clone()
scores = scores.clone()
idxs = torch.arange(scores.size()[0])
idxs_out = []
scores_out = []
while scores.numel() > 0:
top_idx = torch.argmax(scores)
idxs_out.append(idxs[top_idx].item())
scores_out.append(scores[top_idx].item())
top_box = boxes[top_idx]
ious = pairwise_iou_func(box_class(top_box.unsqueeze(0)), box_class(boxes))[0]
if method == "linear":
decay = torch.ones_like(ious)
decay_mask = ious > linear_threshold
decay[decay_mask] = 1 - ious[decay_mask]
elif method == "gaussian":
decay = torch.exp(-torch.pow(ious, 2) / gaussian_sigma)
elif method == "hard": # standard NMS
decay = (ious < linear_threshold).float()
else:
raise NotImplementedError("{} soft nms method not implemented.".format(method))
scores *= decay
keep = scores > prune_threshold
keep[top_idx] = False
boxes = boxes[keep]
scores = scores[keep]
idxs = idxs[keep]
return torch.tensor(idxs_out).to(boxes.device), torch.tensor(scores_out).to(scores.device) |