File size: 25,283 Bytes
c3a1897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model. """
# Adapted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py

from __future__ import absolute_import, division, print_function, unicode_literals
import copy
import os
import json
import logging
import math
import sys
from io import open
import torch
from torch import nn
import torch.utils.checkpoint as checkpoint
from .file_utils import cached_path


logger = logging.getLogger()


BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-config.json",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-config.json",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-config.json",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-config.json",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-config.json",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-config.json",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-config.json",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-config.json",
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-config.json",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-config.json",
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-config.json",
}


def qk2attn(query, key, attention_mask, gamma):
    query = query / gamma
    attention_scores = torch.matmul(query, key.transpose(-1, -2))
    if attention_mask is not None:
        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
        attention_scores = attention_scores + attention_mask
    return attention_scores.softmax(dim=-1)


class QK2Attention(nn.Module):
    def forward(self, query, key, attention_mask, gamma):
        return qk2attn(query, key, attention_mask, gamma)


LayerNormClass = torch.nn.LayerNorm


class BertSelfAttention(nn.Module):
    def __init__(self, config):
        super(BertSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads))
        self.output_attentions = config.output_attentions

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
        self.softmax = nn.Softmax(dim=-1)
        self.qk2attn = QK2Attention()

    def transpose_for_scores(self, x):
        if torch._C._get_tracing_state():
            # exporter is not smart enough to detect dynamic size for some paths
            x = x.view(x.shape[0], -1, self.num_attention_heads, self.attention_head_size)
        else:
            new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
            x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(self, hidden_states, attention_mask, head_mask=None,
            history_state=None):
        if history_state is not None:
            x_states = torch.cat([history_state, hidden_states], dim=1)
            mixed_query_layer = self.query(hidden_states)
            mixed_key_layer = self.key(x_states)
            mixed_value_layer = self.value(x_states)
        else:
            mixed_query_layer = self.query(hidden_states)
            mixed_key_layer = self.key(hidden_states)
            mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        attention_probs = self.qk2attn(query_layer, key_layer, attention_mask, math.sqrt(self.attention_head_size))

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,)
        return outputs


class BertSelfOutput(nn.Module):
    def __init__(self, config):
        super(BertSelfOutput, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.pre_norm = hasattr(config, 'pre_norm') and config.pre_norm
        if not self.pre_norm:
            self.LayerNorm = LayerNormClass(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        if not self.pre_norm:
            hidden_states = self.LayerNorm(hidden_states + input_tensor)
        else:
            hidden_states = hidden_states + input_tensor
        return hidden_states


class BertAttention(nn.Module):
    def __init__(self, config):
        super(BertAttention, self).__init__()
        self.pre_norm = hasattr(config, 'pre_norm') and config.pre_norm
        if self.pre_norm:
            self.LayerNorm = LayerNormClass(config.hidden_size, eps=config.layer_norm_eps)
        self.self = BertSelfAttention(config)
        self.output = BertSelfOutput(config)

    def forward(self, input_tensor, attention_mask, head_mask=None,
            history_state=None):
        if self.pre_norm:
            self_outputs = self.self(self.LayerNorm(input_tensor), attention_mask, head_mask,
                    self.layerNorm(history_state) if history_state else history_state)
        else:
            self_outputs = self.self(input_tensor, attention_mask, head_mask,
                    history_state)
        attention_output = self.output(self_outputs[0], input_tensor)
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


class BertIntermediate(nn.Module):
    def __init__(self, config):
        super(BertIntermediate, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        assert config.hidden_act == 'gelu', 'Please implement other activation functions'
        self.intermediate_act_fn = _gelu_python

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BertOutput(nn.Module):
    def __init__(self, config):
        super(BertOutput, self).__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.pre_norm = hasattr(config, 'pre_norm') and config.pre_norm
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        if not self.pre_norm:
            self.LayerNorm = LayerNormClass(config.hidden_size, eps=config.layer_norm_eps)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        if not self.pre_norm:
            hidden_states = self.LayerNorm(hidden_states + input_tensor)
        else:
            hidden_states = hidden_states + input_tensor
        return hidden_states


class Mlp(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.pre_norm = hasattr(config, 'pre_norm') and config.pre_norm
        self.intermediate = BertIntermediate(config)
        if self.pre_norm:
            self.LayerNorm = LayerNormClass(config.hidden_size, eps=config.layer_norm_eps)
        self.output = BertOutput(config)

    def forward(self, attention_output):
        if not self.pre_norm:
            intermediate_output = self.intermediate(attention_output)
        else:
            intermediate_output = self.intermediate(self.LayerNorm(attention_output))
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output


class BertLayer(nn.Module):
    def __init__(self, config, use_act_checkpoint=True):
        super(BertLayer, self).__init__()
        self.pre_norm = hasattr(config, 'pre_norm') and config.pre_norm
        self.use_mlp_wrapper = hasattr(config, 'use_mlp_wrapper') and config.use_mlp_wrapper
        self.attention = BertAttention(config)
        self.use_act_checkpoint = use_act_checkpoint
        if self.use_mlp_wrapper:
            self.mlp = Mlp(config)
        else:
            self.intermediate = BertIntermediate(config)
            if self.pre_norm:
                self.LayerNorm = LayerNormClass(config.hidden_size, eps=config.layer_norm_eps)
            self.output = BertOutput(config)

    def forward(self, hidden_states, attention_mask, head_mask=None,
                history_state=None):
        if self.use_act_checkpoint:
            attention_outputs = checkpoint.checkpoint(self.attention, hidden_states,
                                                      attention_mask, head_mask, history_state)
        else:
            attention_outputs = self.attention(hidden_states, attention_mask,
                                               head_mask, history_state)
        attention_output = attention_outputs[0]
        if self.use_mlp_wrapper:
            layer_output = self.mlp(attention_output)
        else:
            if not self.pre_norm:
                intermediate_output = self.intermediate(attention_output)
            else:
                intermediate_output = self.intermediate(self.LayerNorm(attention_output))
            layer_output = self.output(intermediate_output, attention_output)
        outputs = (layer_output,) + attention_outputs[1:]  # add attentions if we output them
        return outputs


class BertEncoder(nn.Module):
    def __init__(self, config, use_act_checkpoint=True):
        super(BertEncoder, self).__init__()
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
        self.layer = nn.ModuleList([BertLayer(config, use_act_checkpoint=use_act_checkpoint) for _ in range(config.num_hidden_layers)])
        self.pre_norm = hasattr(config, 'pre_norm') and config.pre_norm
        if self.pre_norm:
            self.LayerNorm = LayerNormClass(config.hidden_size, eps=config.layer_norm_eps)

    def forward(self, hidden_states, attention_mask, head_mask=None,
                encoder_history_states=None):
        all_hidden_states = ()
        all_attentions = ()
        for i, layer_module in enumerate(self.layer):
            if self.output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            history_state = None if encoder_history_states is None else encoder_history_states[i]
            layer_outputs = layer_module(
                hidden_states, attention_mask,
                (None if head_mask is None else head_mask[i]),
                history_state,
            )
            hidden_states = layer_outputs[0]

            if self.output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)
        if self.pre_norm:
            hidden_states = self.LayerNorm(hidden_states)
        outputs = (hidden_states,)
        if self.output_hidden_states:
            outputs = outputs + (all_hidden_states,)
        if self.output_attentions:
            outputs = outputs + (all_attentions,)
        return outputs

CONFIG_NAME = "config.json"

class PretrainedConfig(object):
    """ Base class for all configuration classes.
        Handle a few common parameters and methods for loading/downloading/saving configurations.
    """
    pretrained_config_archive_map = {}

    def __init__(self, **kwargs):
        self.finetuning_task = kwargs.pop('finetuning_task', None)
        self.num_labels = kwargs.pop('num_labels', 2)
        self.output_attentions = kwargs.pop('output_attentions', False)
        self.output_hidden_states = kwargs.pop('output_hidden_states', False)
        self.torchscript = kwargs.pop('torchscript', False)

    def save_pretrained(self, save_directory):
        """ Save a configuration object to a directory, so that it
            can be re-loaded using the `from_pretrained(save_directory)` class method.
        """
        assert os.path.isdir(save_directory), "Saving path should be a directory where the model and configuration can be saved"

        # If we save using the predefined names, we can load using `from_pretrained`
        output_config_file = os.path.join(save_directory, CONFIG_NAME)

        self.to_json_file(output_config_file)

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        r""" Instantiate a PretrainedConfig from a pre-trained model configuration.

        Params:
            **pretrained_model_name_or_path**: either:
                - a string with the `shortcut name` of a pre-trained model configuration to load from cache
                    or download and cache if not already stored in cache (e.g. 'bert-base-uncased').
                - a path to a `directory` containing a configuration file saved
                    using the `save_pretrained(save_directory)` method.
                - a path or url to a saved configuration `file`.
            **cache_dir**: (`optional`) string:
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
            **return_unused_kwargs**: (`optional`) bool:
                - If False, then this function returns just the final configuration object.
                - If True, then this functions returns a tuple `(config, unused_kwargs)` where `unused_kwargs`
                is a dictionary consisting of the key/value pairs whose keys are not configuration attributes:
                ie the part of kwargs which has not been used to update `config` and is otherwise ignored.
            **kwargs**: (`optional`) dict:
                Dictionary of key/value pairs with which to update the configuration object after loading.
                - The values in kwargs of any keys which are configuration attributes will be used
                to override the loaded values.
                - Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
                by the `return_unused_kwargs` keyword parameter.

        Examples::

            >>> config = BertConfig.from_pretrained('bert-base-uncased')    # Download configuration from S3 and cache.
            >>> config = BertConfig.from_pretrained('./test/saved_model/')  # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
            >>> config = BertConfig.from_pretrained('./test/saved_model/my_configuration.json')
            >>> config = BertConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False)
            >>> assert config.output_attention == True
            >>> config, unused_kwargs = BertConfig.from_pretrained('bert-base-uncased', output_attention=True,
            >>>                                                    foo=False, return_unused_kwargs=True)
            >>> assert config.output_attention == True
            >>> assert unused_kwargs == {'foo': False}

        """
        cache_dir = kwargs.pop('cache_dir', None)
        return_unused_kwargs = kwargs.pop('return_unused_kwargs', False)

        if pretrained_model_name_or_path in cls.pretrained_config_archive_map:
            config_file = cls.pretrained_config_archive_map[pretrained_model_name_or_path]
        elif os.path.isdir(pretrained_model_name_or_path):
            config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
        else:
            config_file = pretrained_model_name_or_path
        # redirect to the cache, if necessary
        try:
            resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
        except EnvironmentError:
            if pretrained_model_name_or_path in cls.pretrained_config_archive_map:
                logger.error(
                    "Couldn't reach server at '{}' to download pretrained model configuration file.".format(
                        config_file))
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find any file "
                    "associated to this path or url.".format(
                        pretrained_model_name_or_path,
                        ', '.join(cls.pretrained_config_archive_map.keys()),
                        config_file))
            return None
        if resolved_config_file == config_file:
            logger.info("loading configuration file {}".format(config_file))
        else:
            logger.info("loading configuration file {} from cache at {}".format(
                config_file, resolved_config_file))

        # Load config
        config = cls.from_json_file(resolved_config_file)

        # Update config with kwargs if needed
        to_remove = []
        for key, value in kwargs.items():
            if hasattr(config, key):
                setattr(config, key, value)
                to_remove.append(key)
        # add img_layer_norm_eps, use_img_layernorm
        if "img_layer_norm_eps" in kwargs:
            setattr(config, "img_layer_norm_eps", kwargs["img_layer_norm_eps"])
            to_remove.append("img_layer_norm_eps")
        if "use_img_layernorm" in kwargs:
            setattr(config, "use_img_layernorm", kwargs["use_img_layernorm"])
            to_remove.append("use_img_layernorm")
        for key in to_remove:
            kwargs.pop(key, None)

        logger.info("Model config %s", config)
        if return_unused_kwargs:
            return config, kwargs
        else:
            return config

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `Config` from a Python dictionary of parameters."""
        config = cls(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `BertConfig` from a json file of parameters."""
        with open(json_file, "r", encoding='utf-8') as reader:
            text = reader.read()
        return cls.from_dict(json.loads(text))

    def __eq__(self, other):
        return self.__dict__ == other.__dict__

    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

    def to_json_file(self, json_file_path):
        """ Save this instance to a json file."""
        with open(json_file_path, "w", encoding='utf-8') as writer:
            writer.write(self.to_json_string())


class BertConfig(PretrainedConfig):
    r"""
        :class:`~pytorch_transformers.BertConfig` is the configuration class to store the configuration of a
        `BertModel`.


        Arguments:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
            hidden_size: Size of the encoder layers and the pooler layer.
            num_hidden_layers: Number of hidden layers in the Transformer encoder.
            num_attention_heads: Number of attention heads for each attention layer in
                the Transformer encoder.
            intermediate_size: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            hidden_act: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            hidden_dropout_prob: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_probs_dropout_prob: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            type_vocab_size: The vocabulary size of the `token_type_ids` passed into
                `BertModel`.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
            layer_norm_eps: The epsilon used by LayerNorm.
    """
    pretrained_config_archive_map = BERT_PRETRAINED_CONFIG_ARCHIVE_MAP

    def __init__(self,
                 vocab_size_or_config_json_file=30522,
                 hidden_size=768,
                 num_hidden_layers=12,
                 num_attention_heads=12,
                 intermediate_size=3072,
                 hidden_act="gelu",
                 hidden_dropout_prob=0.1,
                 attention_probs_dropout_prob=0.1,
                 max_position_embeddings=512,
                 type_vocab_size=2,
                 initializer_range=0.02,
                 layer_norm_eps=1e-12,
                 **kwargs):
        super(BertConfig, self).__init__(**kwargs)
        if isinstance(vocab_size_or_config_json_file, str):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.hidden_act = hidden_act
            self.intermediate_size = intermediate_size
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.initializer_range = initializer_range
            self.layer_norm_eps = layer_norm_eps
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")


def _gelu_python(x):

    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))