Spaces:
Runtime error
Runtime error
File size: 25,283 Bytes
c3a1897 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model. """
# Adapted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
from __future__ import absolute_import, division, print_function, unicode_literals
import copy
import os
import json
import logging
import math
import sys
from io import open
import torch
from torch import nn
import torch.utils.checkpoint as checkpoint
from .file_utils import cached_path
logger = logging.getLogger()
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json",
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-config.json",
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json",
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-config.json",
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-config.json",
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-config.json",
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-config.json",
'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-config.json",
'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-config.json",
'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-config.json",
'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-config.json",
'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-config.json",
'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-config.json",
}
def qk2attn(query, key, attention_mask, gamma):
query = query / gamma
attention_scores = torch.matmul(query, key.transpose(-1, -2))
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
return attention_scores.softmax(dim=-1)
class QK2Attention(nn.Module):
def forward(self, query, key, attention_mask, gamma):
return qk2attn(query, key, attention_mask, gamma)
LayerNormClass = torch.nn.LayerNorm
class BertSelfAttention(nn.Module):
def __init__(self, config):
super(BertSelfAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
self.output_attentions = config.output_attentions
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.softmax = nn.Softmax(dim=-1)
self.qk2attn = QK2Attention()
def transpose_for_scores(self, x):
if torch._C._get_tracing_state():
# exporter is not smart enough to detect dynamic size for some paths
x = x.view(x.shape[0], -1, self.num_attention_heads, self.attention_head_size)
else:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask, head_mask=None,
history_state=None):
if history_state is not None:
x_states = torch.cat([history_state, hidden_states], dim=1)
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(x_states)
mixed_value_layer = self.value(x_states)
else:
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
attention_probs = self.qk2attn(query_layer, key_layer, attention_mask, math.sqrt(self.attention_head_size))
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,)
return outputs
class BertSelfOutput(nn.Module):
def __init__(self, config):
super(BertSelfOutput, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.pre_norm = hasattr(config, 'pre_norm') and config.pre_norm
if not self.pre_norm:
self.LayerNorm = LayerNormClass(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
if not self.pre_norm:
hidden_states = self.LayerNorm(hidden_states + input_tensor)
else:
hidden_states = hidden_states + input_tensor
return hidden_states
class BertAttention(nn.Module):
def __init__(self, config):
super(BertAttention, self).__init__()
self.pre_norm = hasattr(config, 'pre_norm') and config.pre_norm
if self.pre_norm:
self.LayerNorm = LayerNormClass(config.hidden_size, eps=config.layer_norm_eps)
self.self = BertSelfAttention(config)
self.output = BertSelfOutput(config)
def forward(self, input_tensor, attention_mask, head_mask=None,
history_state=None):
if self.pre_norm:
self_outputs = self.self(self.LayerNorm(input_tensor), attention_mask, head_mask,
self.layerNorm(history_state) if history_state else history_state)
else:
self_outputs = self.self(input_tensor, attention_mask, head_mask,
history_state)
attention_output = self.output(self_outputs[0], input_tensor)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class BertIntermediate(nn.Module):
def __init__(self, config):
super(BertIntermediate, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
assert config.hidden_act == 'gelu', 'Please implement other activation functions'
self.intermediate_act_fn = _gelu_python
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BertOutput(nn.Module):
def __init__(self, config):
super(BertOutput, self).__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.pre_norm = hasattr(config, 'pre_norm') and config.pre_norm
self.dropout = nn.Dropout(config.hidden_dropout_prob)
if not self.pre_norm:
self.LayerNorm = LayerNormClass(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
if not self.pre_norm:
hidden_states = self.LayerNorm(hidden_states + input_tensor)
else:
hidden_states = hidden_states + input_tensor
return hidden_states
class Mlp(nn.Module):
def __init__(self, config):
super().__init__()
self.pre_norm = hasattr(config, 'pre_norm') and config.pre_norm
self.intermediate = BertIntermediate(config)
if self.pre_norm:
self.LayerNorm = LayerNormClass(config.hidden_size, eps=config.layer_norm_eps)
self.output = BertOutput(config)
def forward(self, attention_output):
if not self.pre_norm:
intermediate_output = self.intermediate(attention_output)
else:
intermediate_output = self.intermediate(self.LayerNorm(attention_output))
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class BertLayer(nn.Module):
def __init__(self, config, use_act_checkpoint=True):
super(BertLayer, self).__init__()
self.pre_norm = hasattr(config, 'pre_norm') and config.pre_norm
self.use_mlp_wrapper = hasattr(config, 'use_mlp_wrapper') and config.use_mlp_wrapper
self.attention = BertAttention(config)
self.use_act_checkpoint = use_act_checkpoint
if self.use_mlp_wrapper:
self.mlp = Mlp(config)
else:
self.intermediate = BertIntermediate(config)
if self.pre_norm:
self.LayerNorm = LayerNormClass(config.hidden_size, eps=config.layer_norm_eps)
self.output = BertOutput(config)
def forward(self, hidden_states, attention_mask, head_mask=None,
history_state=None):
if self.use_act_checkpoint:
attention_outputs = checkpoint.checkpoint(self.attention, hidden_states,
attention_mask, head_mask, history_state)
else:
attention_outputs = self.attention(hidden_states, attention_mask,
head_mask, history_state)
attention_output = attention_outputs[0]
if self.use_mlp_wrapper:
layer_output = self.mlp(attention_output)
else:
if not self.pre_norm:
intermediate_output = self.intermediate(attention_output)
else:
intermediate_output = self.intermediate(self.LayerNorm(attention_output))
layer_output = self.output(intermediate_output, attention_output)
outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
return outputs
class BertEncoder(nn.Module):
def __init__(self, config, use_act_checkpoint=True):
super(BertEncoder, self).__init__()
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.layer = nn.ModuleList([BertLayer(config, use_act_checkpoint=use_act_checkpoint) for _ in range(config.num_hidden_layers)])
self.pre_norm = hasattr(config, 'pre_norm') and config.pre_norm
if self.pre_norm:
self.LayerNorm = LayerNormClass(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states, attention_mask, head_mask=None,
encoder_history_states=None):
all_hidden_states = ()
all_attentions = ()
for i, layer_module in enumerate(self.layer):
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
history_state = None if encoder_history_states is None else encoder_history_states[i]
layer_outputs = layer_module(
hidden_states, attention_mask,
(None if head_mask is None else head_mask[i]),
history_state,
)
hidden_states = layer_outputs[0]
if self.output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if self.pre_norm:
hidden_states = self.LayerNorm(hidden_states)
outputs = (hidden_states,)
if self.output_hidden_states:
outputs = outputs + (all_hidden_states,)
if self.output_attentions:
outputs = outputs + (all_attentions,)
return outputs
CONFIG_NAME = "config.json"
class PretrainedConfig(object):
""" Base class for all configuration classes.
Handle a few common parameters and methods for loading/downloading/saving configurations.
"""
pretrained_config_archive_map = {}
def __init__(self, **kwargs):
self.finetuning_task = kwargs.pop('finetuning_task', None)
self.num_labels = kwargs.pop('num_labels', 2)
self.output_attentions = kwargs.pop('output_attentions', False)
self.output_hidden_states = kwargs.pop('output_hidden_states', False)
self.torchscript = kwargs.pop('torchscript', False)
def save_pretrained(self, save_directory):
""" Save a configuration object to a directory, so that it
can be re-loaded using the `from_pretrained(save_directory)` class method.
"""
assert os.path.isdir(save_directory), "Saving path should be a directory where the model and configuration can be saved"
# If we save using the predefined names, we can load using `from_pretrained`
output_config_file = os.path.join(save_directory, CONFIG_NAME)
self.to_json_file(output_config_file)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
r""" Instantiate a PretrainedConfig from a pre-trained model configuration.
Params:
**pretrained_model_name_or_path**: either:
- a string with the `shortcut name` of a pre-trained model configuration to load from cache
or download and cache if not already stored in cache (e.g. 'bert-base-uncased').
- a path to a `directory` containing a configuration file saved
using the `save_pretrained(save_directory)` method.
- a path or url to a saved configuration `file`.
**cache_dir**: (`optional`) string:
Path to a directory in which a downloaded pre-trained model
configuration should be cached if the standard cache should not be used.
**return_unused_kwargs**: (`optional`) bool:
- If False, then this function returns just the final configuration object.
- If True, then this functions returns a tuple `(config, unused_kwargs)` where `unused_kwargs`
is a dictionary consisting of the key/value pairs whose keys are not configuration attributes:
ie the part of kwargs which has not been used to update `config` and is otherwise ignored.
**kwargs**: (`optional`) dict:
Dictionary of key/value pairs with which to update the configuration object after loading.
- The values in kwargs of any keys which are configuration attributes will be used
to override the loaded values.
- Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
by the `return_unused_kwargs` keyword parameter.
Examples::
>>> config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache.
>>> config = BertConfig.from_pretrained('./test/saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
>>> config = BertConfig.from_pretrained('./test/saved_model/my_configuration.json')
>>> config = BertConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False)
>>> assert config.output_attention == True
>>> config, unused_kwargs = BertConfig.from_pretrained('bert-base-uncased', output_attention=True,
>>> foo=False, return_unused_kwargs=True)
>>> assert config.output_attention == True
>>> assert unused_kwargs == {'foo': False}
"""
cache_dir = kwargs.pop('cache_dir', None)
return_unused_kwargs = kwargs.pop('return_unused_kwargs', False)
if pretrained_model_name_or_path in cls.pretrained_config_archive_map:
config_file = cls.pretrained_config_archive_map[pretrained_model_name_or_path]
elif os.path.isdir(pretrained_model_name_or_path):
config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
else:
config_file = pretrained_model_name_or_path
# redirect to the cache, if necessary
try:
resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
except EnvironmentError:
if pretrained_model_name_or_path in cls.pretrained_config_archive_map:
logger.error(
"Couldn't reach server at '{}' to download pretrained model configuration file.".format(
config_file))
else:
logger.error(
"Model name '{}' was not found in model name list ({}). "
"We assumed '{}' was a path or url but couldn't find any file "
"associated to this path or url.".format(
pretrained_model_name_or_path,
', '.join(cls.pretrained_config_archive_map.keys()),
config_file))
return None
if resolved_config_file == config_file:
logger.info("loading configuration file {}".format(config_file))
else:
logger.info("loading configuration file {} from cache at {}".format(
config_file, resolved_config_file))
# Load config
config = cls.from_json_file(resolved_config_file)
# Update config with kwargs if needed
to_remove = []
for key, value in kwargs.items():
if hasattr(config, key):
setattr(config, key, value)
to_remove.append(key)
# add img_layer_norm_eps, use_img_layernorm
if "img_layer_norm_eps" in kwargs:
setattr(config, "img_layer_norm_eps", kwargs["img_layer_norm_eps"])
to_remove.append("img_layer_norm_eps")
if "use_img_layernorm" in kwargs:
setattr(config, "use_img_layernorm", kwargs["use_img_layernorm"])
to_remove.append("use_img_layernorm")
for key in to_remove:
kwargs.pop(key, None)
logger.info("Model config %s", config)
if return_unused_kwargs:
return config, kwargs
else:
return config
@classmethod
def from_dict(cls, json_object):
"""Constructs a `Config` from a Python dictionary of parameters."""
config = cls(vocab_size_or_config_json_file=-1)
for key, value in json_object.items():
config.__dict__[key] = value
return config
@classmethod
def from_json_file(cls, json_file):
"""Constructs a `BertConfig` from a json file of parameters."""
with open(json_file, "r", encoding='utf-8') as reader:
text = reader.read()
return cls.from_dict(json.loads(text))
def __eq__(self, other):
return self.__dict__ == other.__dict__
def __repr__(self):
return str(self.to_json_string())
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
def to_json_file(self, json_file_path):
""" Save this instance to a json file."""
with open(json_file_path, "w", encoding='utf-8') as writer:
writer.write(self.to_json_string())
class BertConfig(PretrainedConfig):
r"""
:class:`~pytorch_transformers.BertConfig` is the configuration class to store the configuration of a
`BertModel`.
Arguments:
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
hidden_size: Size of the encoder layers and the pooler layer.
num_hidden_layers: Number of hidden layers in the Transformer encoder.
num_attention_heads: Number of attention heads for each attention layer in
the Transformer encoder.
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
layer in the Transformer encoder.
hidden_act: The non-linear activation function (function or string) in the
encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
hidden_dropout_prob: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob: The dropout ratio for the attention
probabilities.
max_position_embeddings: The maximum sequence length that this model might
ever be used with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048).
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
`BertModel`.
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
layer_norm_eps: The epsilon used by LayerNorm.
"""
pretrained_config_archive_map = BERT_PRETRAINED_CONFIG_ARCHIVE_MAP
def __init__(self,
vocab_size_or_config_json_file=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
**kwargs):
super(BertConfig, self).__init__(**kwargs)
if isinstance(vocab_size_or_config_json_file, str):
with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
json_config = json.loads(reader.read())
for key, value in json_config.items():
self.__dict__[key] = value
elif isinstance(vocab_size_or_config_json_file, int):
self.vocab_size = vocab_size_or_config_json_file
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
else:
raise ValueError("First argument must be either a vocabulary size (int)"
"or the path to a pretrained model config file (str)")
def _gelu_python(x):
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) |