Spaces:
Runtime error
Runtime error
File size: 7,464 Bytes
c3a1897 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
# Copyright (c) Facebook, Inc. and its affiliates.
import json
import math
import os
import tempfile
import time
import unittest
from unittest import mock
import torch
from fvcore.common.checkpoint import Checkpointer
from torch import nn
from detectron2 import model_zoo
from detectron2.config import configurable, get_cfg
from detectron2.engine import DefaultTrainer, SimpleTrainer, default_setup, hooks
from detectron2.modeling.meta_arch import META_ARCH_REGISTRY
from detectron2.utils.events import CommonMetricPrinter, JSONWriter
@META_ARCH_REGISTRY.register()
class _SimpleModel(nn.Module):
@configurable
def __init__(self, sleep_sec=0):
super().__init__()
self.mod = nn.Linear(10, 20)
self.sleep_sec = sleep_sec
@classmethod
def from_config(cls, cfg):
return {}
def forward(self, x):
if self.sleep_sec > 0:
time.sleep(self.sleep_sec)
return {"loss": x.sum() + sum([x.mean() for x in self.parameters()])}
class TestTrainer(unittest.TestCase):
def _data_loader(self, device):
device = torch.device(device)
while True:
yield torch.rand(3, 3).to(device)
def test_simple_trainer(self, device="cpu"):
model = _SimpleModel().to(device=device)
trainer = SimpleTrainer(
model, self._data_loader(device), torch.optim.SGD(model.parameters(), 0.1)
)
trainer.train(0, 10)
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not available")
def test_simple_trainer_cuda(self):
self.test_simple_trainer(device="cuda")
def test_writer_hooks(self):
model = _SimpleModel(sleep_sec=0.1)
trainer = SimpleTrainer(
model, self._data_loader("cpu"), torch.optim.SGD(model.parameters(), 0.1)
)
max_iter = 50
with tempfile.TemporaryDirectory(prefix="detectron2_test") as d:
json_file = os.path.join(d, "metrics.json")
writers = [CommonMetricPrinter(max_iter), JSONWriter(json_file)]
trainer.register_hooks(
[hooks.EvalHook(0, lambda: {"metric": 100}), hooks.PeriodicWriter(writers)]
)
with self.assertLogs(writers[0].logger) as logs:
trainer.train(0, max_iter)
with open(json_file, "r") as f:
data = [json.loads(line.strip()) for line in f]
self.assertEqual([x["iteration"] for x in data], [19, 39, 49, 50])
# the eval metric is in the last line with iter 50
self.assertIn("metric", data[-1], "Eval metric must be in last line of JSON!")
# test logged messages from CommonMetricPrinter
self.assertEqual(len(logs.output), 3)
for log, iter in zip(logs.output, [19, 39, 49]):
self.assertIn(f"iter: {iter}", log)
self.assertIn("eta: 0:00:00", logs.output[-1], "Last ETA must be 0!")
def test_default_trainer(self):
# TODO: this test requires manifold access, so changed device to CPU. see: T88318502
cfg = get_cfg()
cfg.MODEL.DEVICE = "cpu"
cfg.MODEL.META_ARCHITECTURE = "_SimpleModel"
cfg.DATASETS.TRAIN = ("coco_2017_val_100",)
with tempfile.TemporaryDirectory(prefix="detectron2_test") as d:
cfg.OUTPUT_DIR = d
trainer = DefaultTrainer(cfg)
# test property
self.assertIs(trainer.model, trainer._trainer.model)
trainer.model = _SimpleModel()
self.assertIs(trainer.model, trainer._trainer.model)
def test_checkpoint_resume(self):
model = _SimpleModel()
dataloader = self._data_loader("cpu")
opt = torch.optim.SGD(model.parameters(), 0.1)
scheduler = torch.optim.lr_scheduler.StepLR(opt, 3)
with tempfile.TemporaryDirectory(prefix="detectron2_test") as d:
trainer = SimpleTrainer(model, dataloader, opt)
checkpointer = Checkpointer(model, d, opt=opt, trainer=trainer)
trainer.register_hooks(
[
hooks.LRScheduler(scheduler=scheduler),
# checkpoint after scheduler to properly save the state of scheduler
hooks.PeriodicCheckpointer(checkpointer, 10),
]
)
trainer.train(0, 12)
self.assertAlmostEqual(opt.param_groups[0]["lr"], 1e-5)
self.assertEqual(scheduler.last_epoch, 12)
del trainer
opt = torch.optim.SGD(model.parameters(), 999) # lr will be loaded
trainer = SimpleTrainer(model, dataloader, opt)
scheduler = torch.optim.lr_scheduler.StepLR(opt, 3)
trainer.register_hooks(
[
hooks.LRScheduler(scheduler=scheduler),
]
)
checkpointer = Checkpointer(model, d, opt=opt, trainer=trainer)
checkpointer.resume_or_load("non_exist.pth")
self.assertEqual(trainer.iter, 11) # last finished iter number (0-based in Trainer)
# number of times `scheduler.step()` was called (1-based)
self.assertEqual(scheduler.last_epoch, 12)
self.assertAlmostEqual(opt.param_groups[0]["lr"], 1e-5)
def test_eval_hook(self):
model = _SimpleModel()
dataloader = self._data_loader("cpu")
opt = torch.optim.SGD(model.parameters(), 0.1)
for total_iter, period, eval_count in [(30, 15, 2), (31, 15, 3), (20, 0, 1)]:
test_func = mock.Mock(return_value={"metric": 3.0})
trainer = SimpleTrainer(model, dataloader, opt)
trainer.register_hooks([hooks.EvalHook(period, test_func)])
trainer.train(0, total_iter)
self.assertEqual(test_func.call_count, eval_count)
def test_best_checkpointer(self):
model = _SimpleModel()
dataloader = self._data_loader("cpu")
opt = torch.optim.SGD(model.parameters(), 0.1)
metric_name = "metric"
total_iter = 40
test_period = 10
test_cases = [
("max", iter([0.3, 0.4, 0.35, 0.5]), 3),
("min", iter([1.0, 0.8, 0.9, 0.9]), 2),
("min", iter([math.nan, 0.8, 0.9, 0.9]), 1),
]
for mode, metrics, call_count in test_cases:
trainer = SimpleTrainer(model, dataloader, opt)
with tempfile.TemporaryDirectory(prefix="detectron2_test") as d:
checkpointer = Checkpointer(model, d, opt=opt, trainer=trainer)
trainer.register_hooks(
[
hooks.EvalHook(test_period, lambda: {metric_name: next(metrics)}),
hooks.BestCheckpointer(test_period, checkpointer, metric_name, mode=mode),
]
)
with mock.patch.object(checkpointer, "save") as mock_save_method:
trainer.train(0, total_iter)
self.assertEqual(mock_save_method.call_count, call_count)
def test_setup_config(self):
with tempfile.TemporaryDirectory(prefix="detectron2_test") as d:
cfg = get_cfg()
cfg.OUTPUT_DIR = os.path.join(d, "yacs")
default_setup(cfg, {})
cfg = model_zoo.get_config("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.py")
cfg.train.output_dir = os.path.join(d, "omegaconf")
default_setup(cfg, {})
|