from models.blip2_model import ImageCaptioning from models.grit_model import DenseCaptioning from models.gpt_model import ImageToText from models.controlnet_model import TextToImage from models.region_semantic import RegionSemantic from utils.util import read_image_width_height, display_images_and_text import argparse from PIL import Image import base64 from io import BytesIO import os def pil_image_to_base64(image): buffered = BytesIO() image.save(buffered, format="JPEG") img_str = base64.b64encode(buffered.getvalue()).decode() return img_str class ImageTextTransformation: def __init__(self, args): # Load your big model here self.args = args self.init_models() self.ref_image = None def init_models(self): openai_key = os.environ['OPENAI_KEY'] print('\033[1;34m' + "Welcome to the Image2Paragraph toolbox...".center(50, '-') + '\033[0m') print('\033[1;33m' + "Initializing models...".center(50, '-') + '\033[0m') print('\033[1;31m' + "This is time-consuming, please wait...".center(50, '-') + '\033[0m') self.image_caption_model = ImageCaptioning(device=self.args.image_caption_device) self.dense_caption_model = DenseCaptioning(device=self.args.dense_caption_device) self.gpt_model = ImageToText(openai_key) self.controlnet_model = TextToImage(device=self.args.contolnet_device) # time-conusimg on CPU, run on local # self.region_semantic_model = RegionSemantic(device=self.args.semantic_segment_device) print('\033[1;32m' + "Model initialization finished!".center(50, '-') + '\033[0m') def image_to_text(self, img_src): # the information to generate paragraph based on the context self.ref_image = Image.open(img_src) width, height = read_image_width_height(img_src) print(self.args) if self.args.image_caption: image_caption = self.image_caption_model.image_caption(img_src) else: image_caption = " " if self.args.dense_caption: dense_caption = self.dense_caption_model.image_dense_caption(img_src) else: dense_caption = " " if self.args.semantic_segment: region_semantic = self.region_semantic_model.region_semantic(img_src) else: region_semantic = " " generated_text = self.gpt_model.paragraph_summary_with_gpt(image_caption, dense_caption, region_semantic, width, height) return image_caption, dense_caption, region_semantic, generated_text def text_to_image(self, text): generated_image = self.controlnet_model.text_to_image(text, self.ref_image) return generated_image def text_to_image_retrieval(self, text): pass def image_to_text_retrieval(self, image): pass