from PIL import Image import requests from transformers import Blip2Processor, Blip2ForConditionalGeneration import torch class ImageCaptioning: def __init__(self) -> None: self.device = None # self.processor, self.model = None, None self.processor, self.model = self.initialize_model() def initialize_model(self): self.device = "cuda" if torch.cuda.is_available() else "cpu" # self.device = "cpu" # for low gpu memory devices if self.device == 'cpu': self.data_type = torch.float32 else: self.data_type = torch.float16 processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") model = Blip2ForConditionalGeneration.from_pretrained( "Salesforce/blip2-opt-2.7b", torch_dtype=self.data_type ) model.to(self.device) return processor, model def image_caption(self, image_src): image = Image.open(image_src) inputs = self.processor(images=image, return_tensors="pt").to(self.device, self.data_type) generated_ids = self.model.generate(**inputs) generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() print('*'*100 + '\nStep1, BLIP2 caption:') print(generated_text) print('\n' + '*'*100) return generated_text def image_caption_debug(self, image_src): return "A dish with salmon, broccoli, and something yellow."