File size: 1,796 Bytes
a15e210 3fc44fa a15e210 3fc44fa a15e210 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import re
import string
import numpy as np
import torch
import unicodedata
import nltk
# Ensure NLTK stopwords are downloaded
nltk.download('stopwords')
from nltk.corpus import stopwords
stop_words = set(stopwords.words('russian', 'english'))
def data_preprocessing(text: str) -> str:
text = text.lower()
text = text.replace('-', ' ').replace('\n', ' ')
text = re.sub('<.*?>', '', text)
text = ''.join([c for c in text if unicodedata.category(c).startswith(('L', 'N', 'Z')) or c == "'"])
text = ' '.join([word for word in text.split() if word.lower() not in stop_words])
text = ' '.join([word for word in text.split() if not word.isdigit()])
return text
def get_words_by_freq(sorted_words: list, n: int = 10) -> list:
return list(filter(lambda x: x[1] > n, sorted_words))
def padding(review_int: list, seq_len: int) -> np.array: # type: ignore
features = np.zeros((len(review_int), seq_len), dtype = int)
for i, review in enumerate(review_int):
if len(review) <= seq_len:
zeros = list(np.zeros(seq_len - len(review)))
new = zeros + review
else:
new = review[: seq_len]
features[i, :] = np.array(new)
return features
def preprocess_single_string(
input_string: str,
seq_len: int,
vocab_to_int: dict,
verbose : bool = False
) -> torch.tensor:
preprocessed_string = data_preprocessing(input_string)
result_list = []
for word in preprocessed_string.split():
try:
result_list.append(vocab_to_int[word])
except KeyError as e:
if verbose:
print(f'{e}: not in dictionary!')
pass
result_padded = padding([result_list], seq_len)[0]
return torch.tensor(result_padded) |