File size: 6,220 Bytes
ac4ce84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import numpy as np
import torch
from PIL import Image
from models.mtcnn.mtcnn_pytorch.src.get_nets import PNet, RNet, ONet
from models.mtcnn.mtcnn_pytorch.src.box_utils import nms, calibrate_box, get_image_boxes, convert_to_square
from models.mtcnn.mtcnn_pytorch.src.first_stage import run_first_stage
from models.mtcnn.mtcnn_pytorch.src.align_trans import get_reference_facial_points, warp_and_crop_face

device = 'cuda:0'


class MTCNN():
    def __init__(self):
        print(device)
        self.pnet = PNet().to(device)
        self.rnet = RNet().to(device)
        self.onet = ONet().to(device)
        self.pnet.eval()
        self.rnet.eval()
        self.onet.eval()
        self.refrence = get_reference_facial_points(default_square=True)

    def align(self, img):
        _, landmarks = self.detect_faces(img)
        if len(landmarks) == 0:
            return None, None
        facial5points = [[landmarks[0][j], landmarks[0][j + 5]] for j in range(5)]
        warped_face, tfm = warp_and_crop_face(np.array(img), facial5points, self.refrence, crop_size=(112, 112))
        return Image.fromarray(warped_face), tfm

    def align_multi(self, img, limit=None, min_face_size=30.0):
        boxes, landmarks = self.detect_faces(img, min_face_size)
        if limit:
            boxes = boxes[:limit]
            landmarks = landmarks[:limit]
        faces = []
        tfms = []
        for landmark in landmarks:
            facial5points = [[landmark[j], landmark[j + 5]] for j in range(5)]
            warped_face, tfm = warp_and_crop_face(np.array(img), facial5points, self.refrence, crop_size=(112, 112))
            faces.append(Image.fromarray(warped_face))
            tfms.append(tfm)
        return boxes, faces, tfms

    def detect_faces(self, image, min_face_size=20.0,
                     thresholds=[0.15, 0.25, 0.35],
                     nms_thresholds=[0.7, 0.7, 0.7]):
        """
        Arguments:
            image: an instance of PIL.Image.
            min_face_size: a float number.
            thresholds: a list of length 3.
            nms_thresholds: a list of length 3.

        Returns:
            two float numpy arrays of shapes [n_boxes, 4] and [n_boxes, 10],
            bounding boxes and facial landmarks.
        """

        # BUILD AN IMAGE PYRAMID
        width, height = image.size
        min_length = min(height, width)

        min_detection_size = 12
        factor = 0.707  # sqrt(0.5)

        # scales for scaling the image
        scales = []

        # scales the image so that
        # minimum size that we can detect equals to
        # minimum face size that we want to detect
        m = min_detection_size / min_face_size
        min_length *= m

        factor_count = 0
        while min_length > min_detection_size:
            scales.append(m * factor ** factor_count)
            min_length *= factor
            factor_count += 1

        # STAGE 1

        # it will be returned
        bounding_boxes = []

        with torch.no_grad():
            # run P-Net on different scales
            for s in scales:
                boxes = run_first_stage(image, self.pnet, scale=s, threshold=thresholds[0])
                bounding_boxes.append(boxes)

            # collect boxes (and offsets, and scores) from different scales
            bounding_boxes = [i for i in bounding_boxes if i is not None]
            bounding_boxes = np.vstack(bounding_boxes)

            keep = nms(bounding_boxes[:, 0:5], nms_thresholds[0])
            bounding_boxes = bounding_boxes[keep]

            # use offsets predicted by pnet to transform bounding boxes
            bounding_boxes = calibrate_box(bounding_boxes[:, 0:5], bounding_boxes[:, 5:])
            # shape [n_boxes, 5]

            bounding_boxes = convert_to_square(bounding_boxes)
            bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])

            # STAGE 2

            img_boxes = get_image_boxes(bounding_boxes, image, size=24)
            img_boxes = torch.FloatTensor(img_boxes).to(device)

            output = self.rnet(img_boxes)
            offsets = output[0].cpu().data.numpy()  # shape [n_boxes, 4]
            probs = output[1].cpu().data.numpy()  # shape [n_boxes, 2]

            keep = np.where(probs[:, 1] > thresholds[1])[0]
            bounding_boxes = bounding_boxes[keep]
            bounding_boxes[:, 4] = probs[keep, 1].reshape((-1,))
            offsets = offsets[keep]

            keep = nms(bounding_boxes, nms_thresholds[1])
            bounding_boxes = bounding_boxes[keep]
            bounding_boxes = calibrate_box(bounding_boxes, offsets[keep])
            bounding_boxes = convert_to_square(bounding_boxes)
            bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])

            # STAGE 3

            img_boxes = get_image_boxes(bounding_boxes, image, size=48)
            if len(img_boxes) == 0:
                return [], []
            img_boxes = torch.FloatTensor(img_boxes).to(device)
            output = self.onet(img_boxes)
            landmarks = output[0].cpu().data.numpy()  # shape [n_boxes, 10]
            offsets = output[1].cpu().data.numpy()  # shape [n_boxes, 4]
            probs = output[2].cpu().data.numpy()  # shape [n_boxes, 2]

            keep = np.where(probs[:, 1] > thresholds[2])[0]
            bounding_boxes = bounding_boxes[keep]
            bounding_boxes[:, 4] = probs[keep, 1].reshape((-1,))
            offsets = offsets[keep]
            landmarks = landmarks[keep]

            # compute landmark points
            width = bounding_boxes[:, 2] - bounding_boxes[:, 0] + 1.0
            height = bounding_boxes[:, 3] - bounding_boxes[:, 1] + 1.0
            xmin, ymin = bounding_boxes[:, 0], bounding_boxes[:, 1]
            landmarks[:, 0:5] = np.expand_dims(xmin, 1) + np.expand_dims(width, 1) * landmarks[:, 0:5]
            landmarks[:, 5:10] = np.expand_dims(ymin, 1) + np.expand_dims(height, 1) * landmarks[:, 5:10]

            bounding_boxes = calibrate_box(bounding_boxes, offsets)
            keep = nms(bounding_boxes, nms_thresholds[2], mode='min')
            bounding_boxes = bounding_boxes[keep]
            landmarks = landmarks[keep]

        return bounding_boxes, landmarks