Spaces:
Build error
Build error
File size: 9,754 Bytes
01ad5b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
from abc import abstractmethod
import torchvision.transforms as transforms
from datasets import augmentations
class TransformsConfig(object):
def __init__(self, opts):
self.opts = opts
@abstractmethod
def get_transforms(self):
pass
class EncodeTransforms(TransformsConfig):
def __init__(self, opts):
super(EncodeTransforms, self).__init__(opts)
def get_transforms(self):
transforms_dict = {
'transform_gt_train': transforms.Compose([
transforms.Resize((320, 320)),
transforms.RandomHorizontalFlip(0.5),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
'transform_source': None,
'transform_test': transforms.Compose([
transforms.Resize((320, 320)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
'transform_inference': transforms.Compose([
transforms.Resize((320, 320)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
}
return transforms_dict
class FrontalizationTransforms(TransformsConfig):
def __init__(self, opts):
super(FrontalizationTransforms, self).__init__(opts)
def get_transforms(self):
transforms_dict = {
'transform_gt_train': transforms.Compose([
transforms.Resize((256, 256)),
transforms.RandomHorizontalFlip(0.5),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
'transform_source': transforms.Compose([
transforms.Resize((256, 256)),
transforms.RandomHorizontalFlip(0.5),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
'transform_test': transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
'transform_inference': transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
}
return transforms_dict
class SketchToImageTransforms(TransformsConfig):
def __init__(self, opts):
super(SketchToImageTransforms, self).__init__(opts)
def get_transforms(self):
transforms_dict = {
'transform_gt_train': transforms.Compose([
transforms.Resize((320, 320)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
'transform_source': transforms.Compose([
transforms.Resize((320, 320)),
transforms.ToTensor()]),
'transform_test': transforms.Compose([
transforms.Resize((320, 320)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
'transform_inference': transforms.Compose([
transforms.Resize((320, 320)),
transforms.ToTensor()]),
}
return transforms_dict
class SegToImageTransforms(TransformsConfig):
def __init__(self, opts):
super(SegToImageTransforms, self).__init__(opts)
def get_transforms(self):
transforms_dict = {
'transform_gt_train': transforms.Compose([
transforms.Resize((320, 320)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
'transform_source': transforms.Compose([
transforms.Resize((320, 320)),
augmentations.ToOneHot(self.opts.label_nc),
transforms.ToTensor()]),
'transform_test': transforms.Compose([
transforms.Resize((320, 320)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
'transform_inference': transforms.Compose([
transforms.Resize((320, 320)),
augmentations.ToOneHot(self.opts.label_nc),
transforms.ToTensor()])
}
return transforms_dict
class SuperResTransforms(TransformsConfig):
def __init__(self, opts):
super(SuperResTransforms, self).__init__(opts)
def get_transforms(self):
if self.opts.resize_factors is None:
self.opts.resize_factors = '1,2,4,8,16,32'
factors = [int(f) for f in self.opts.resize_factors.split(",")]
print("Performing down-sampling with factors: {}".format(factors))
transforms_dict = {
'transform_gt_train': transforms.Compose([
transforms.Resize((1280, 1280)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
'transform_source': transforms.Compose([
transforms.Resize((320, 320)),
augmentations.BilinearResize(factors=factors),
transforms.Resize((320, 320)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
'transform_test': transforms.Compose([
transforms.Resize((1280, 1280)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
'transform_inference': transforms.Compose([
transforms.Resize((320, 320)),
augmentations.BilinearResize(factors=factors),
transforms.Resize((320, 320)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
}
return transforms_dict
class SuperResTransforms_320(TransformsConfig):
def __init__(self, opts):
super(SuperResTransforms_320, self).__init__(opts)
def get_transforms(self):
if self.opts.resize_factors is None:
self.opts.resize_factors = '1,2,4,8,16,32'
factors = [int(f) for f in self.opts.resize_factors.split(",")]
print("Performing down-sampling with factors: {}".format(factors))
transforms_dict = {
'transform_gt_train': transforms.Compose([
transforms.Resize((320, 320)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
'transform_source': transforms.Compose([
transforms.Resize((320, 320)),
augmentations.BilinearResize(factors=factors),
transforms.Resize((320, 320)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
'transform_test': transforms.Compose([
transforms.Resize((320, 320)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
'transform_inference': transforms.Compose([
transforms.Resize((320, 320)),
augmentations.BilinearResize(factors=factors),
transforms.Resize((320, 320)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
}
return transforms_dict
class ToonifyTransforms(TransformsConfig):
def __init__(self, opts):
super(ToonifyTransforms, self).__init__(opts)
def get_transforms(self):
transforms_dict = {
'transform_gt_train': transforms.Compose([
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
'transform_source': transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
'transform_test': transforms.Compose([
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
'transform_inference': transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
}
return transforms_dict
class EditingTransforms(TransformsConfig):
def __init__(self, opts):
super(EditingTransforms, self).__init__(opts)
def get_transforms(self):
transforms_dict = {
'transform_gt_train': transforms.Compose([
transforms.Resize((1280, 1280)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
'transform_source': transforms.Compose([
transforms.Resize((320, 320)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
'transform_test': transforms.Compose([
transforms.Resize((1280, 1280)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
'transform_inference': transforms.Compose([
transforms.Resize((320, 320)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
}
return transforms_dict |