File size: 9,754 Bytes
01ad5b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
from abc import abstractmethod
import torchvision.transforms as transforms
from datasets import augmentations


class TransformsConfig(object):

    def __init__(self, opts):
        self.opts = opts

    @abstractmethod
    def get_transforms(self):
        pass


class EncodeTransforms(TransformsConfig):

    def __init__(self, opts):
        super(EncodeTransforms, self).__init__(opts)

    def get_transforms(self):
        transforms_dict = {
            'transform_gt_train': transforms.Compose([
                transforms.Resize((320, 320)),
                transforms.RandomHorizontalFlip(0.5),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
            'transform_source': None,
            'transform_test': transforms.Compose([
                transforms.Resize((320, 320)),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
            'transform_inference': transforms.Compose([
                transforms.Resize((320, 320)),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
        }
        return transforms_dict


class FrontalizationTransforms(TransformsConfig):

    def __init__(self, opts):
        super(FrontalizationTransforms, self).__init__(opts)

    def get_transforms(self):
        transforms_dict = {
            'transform_gt_train': transforms.Compose([
                transforms.Resize((256, 256)),
                transforms.RandomHorizontalFlip(0.5),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
            'transform_source': transforms.Compose([
                transforms.Resize((256, 256)),
                transforms.RandomHorizontalFlip(0.5),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
            'transform_test': transforms.Compose([
                transforms.Resize((256, 256)),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
            'transform_inference': transforms.Compose([
                transforms.Resize((256, 256)),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
        }
        return transforms_dict


class SketchToImageTransforms(TransformsConfig):

    def __init__(self, opts):
        super(SketchToImageTransforms, self).__init__(opts)

    def get_transforms(self):
        transforms_dict = {
            'transform_gt_train': transforms.Compose([
                transforms.Resize((320, 320)),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
            'transform_source': transforms.Compose([
                transforms.Resize((320, 320)),
                transforms.ToTensor()]),
            'transform_test': transforms.Compose([
                transforms.Resize((320, 320)),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
            'transform_inference': transforms.Compose([
                transforms.Resize((320, 320)),
                transforms.ToTensor()]),
        }
        return transforms_dict


class SegToImageTransforms(TransformsConfig):

    def __init__(self, opts):
        super(SegToImageTransforms, self).__init__(opts)

    def get_transforms(self):
        transforms_dict = {
            'transform_gt_train': transforms.Compose([
                transforms.Resize((320, 320)),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
            'transform_source': transforms.Compose([
                transforms.Resize((320, 320)),
                augmentations.ToOneHot(self.opts.label_nc),
                transforms.ToTensor()]),
            'transform_test': transforms.Compose([
                transforms.Resize((320, 320)),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
            'transform_inference': transforms.Compose([
                transforms.Resize((320, 320)),
                augmentations.ToOneHot(self.opts.label_nc),
                transforms.ToTensor()])
        }
        return transforms_dict


class SuperResTransforms(TransformsConfig):

    def __init__(self, opts):
        super(SuperResTransforms, self).__init__(opts)

    def get_transforms(self):
        if self.opts.resize_factors is None:
            self.opts.resize_factors = '1,2,4,8,16,32'
        factors = [int(f) for f in self.opts.resize_factors.split(",")]
        print("Performing down-sampling with factors: {}".format(factors))
        transforms_dict = {
            'transform_gt_train': transforms.Compose([
                transforms.Resize((1280, 1280)),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
            'transform_source': transforms.Compose([
                transforms.Resize((320, 320)),
                augmentations.BilinearResize(factors=factors),
                transforms.Resize((320, 320)),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
            'transform_test': transforms.Compose([
                transforms.Resize((1280, 1280)),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
            'transform_inference': transforms.Compose([
                transforms.Resize((320, 320)),
                augmentations.BilinearResize(factors=factors),
                transforms.Resize((320, 320)),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
        }
        return transforms_dict

    
class SuperResTransforms_320(TransformsConfig):

    def __init__(self, opts):
        super(SuperResTransforms_320, self).__init__(opts)

    def get_transforms(self):
        if self.opts.resize_factors is None:
            self.opts.resize_factors = '1,2,4,8,16,32'
        factors = [int(f) for f in self.opts.resize_factors.split(",")]
        print("Performing down-sampling with factors: {}".format(factors))
        transforms_dict = {
            'transform_gt_train': transforms.Compose([
                transforms.Resize((320, 320)),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
            'transform_source': transforms.Compose([
                transforms.Resize((320, 320)),
                augmentations.BilinearResize(factors=factors),
                transforms.Resize((320, 320)),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
            'transform_test': transforms.Compose([
                transforms.Resize((320, 320)),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
            'transform_inference': transforms.Compose([
                transforms.Resize((320, 320)),
                augmentations.BilinearResize(factors=factors),
                transforms.Resize((320, 320)),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
        }
        return transforms_dict
    

class ToonifyTransforms(TransformsConfig):

    def __init__(self, opts):
        super(ToonifyTransforms, self).__init__(opts)

    def get_transforms(self):
        transforms_dict = {
            'transform_gt_train': transforms.Compose([
                transforms.Resize((1024, 1024)),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
            'transform_source': transforms.Compose([
                transforms.Resize((256, 256)),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
            'transform_test': transforms.Compose([
                transforms.Resize((1024, 1024)),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
            'transform_inference': transforms.Compose([
                transforms.Resize((256, 256)),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
        }
        return transforms_dict
    
class EditingTransforms(TransformsConfig):

    def __init__(self, opts):
        super(EditingTransforms, self).__init__(opts)

    def get_transforms(self):
        transforms_dict = {
            'transform_gt_train': transforms.Compose([
                transforms.Resize((1280, 1280)),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
            'transform_source': transforms.Compose([
                transforms.Resize((320, 320)),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
            'transform_test': transforms.Compose([
                transforms.Resize((1280, 1280)),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
            'transform_inference': transforms.Compose([
                transforms.Resize((320, 320)),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
        }
        return transforms_dict