import gradio as gr | |
from sentence_transformers import SentenceTransformer | |
# Load the model | |
model = SentenceTransformer('sentence-transformers/msmarco-distilbert-dot-v5') | |
# Function to get the embedding | |
def embedding(text): | |
text_emb = model.encode(text) | |
return text_emb | |
# Define the Streamlit app | |
gradio_app = gr.Interface( | |
embedding, | |
inputs=gr.Text(label="TEXT"), | |
outputs=gr.Text(label="Embedding"), | |
title="Embedding", | |
) | |
if __name__ == "__main__": | |
gradio_app.launch() |