AyushDey's picture
Create app.py
e94a6aa
raw
history blame
1.03 kB
import gradio as gr
from transformers import pipeline
ner = pipeline('ner')
def merged_words(tokens):
m = []
for token in tokens:
if m and token['entity'].startswith('I-') and m[-1]['entity'].endswith(token['entity'][2:]):
last_token = m[-1]
last_token['word'] += token['word'].replace('##', '')
last_token['end'] = token['end']
last_token['score'] = (last_token['score'] + token[score]) / 2
else:
m.append(token)
return m
def named(input):
output = ner(input)
merged_words = merged_words(output)
return {'text': input, 'entities': merged_words}
a = gr.Interface(fn=name,
inputs=[gr.Textbox(label="Text input", lines= 2)],
outputs=[gr.HighlightedText(label='Text with entities')],
title='Named Entity Recognition', examples=["My name is Andrew, I'm building DeeplearningAI and I live in California", "My name is Poli, I live in Vienna and work at HuggingFace"])
a.launch()