# app.py import torch import torchvision.models as models from fastai.vision.all import * import gradio as gr # Define the path to your model model_path = "model.pth" # Load the model architecture model = models.resnet34(pretrained=False) # Match the architecture you used model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))) # Load weights model.eval() # Set to evaluation mode # Define a simple transform function, adjust if necessary def transform(img): img = PILImage.create(img).resize((224, 224)) # Resize if needed for your model return tensor(img).unsqueeze(0) # Convert to tensor and add batch dimension # Define the prediction function def predict_image(img): img_tensor = transform(img) outputs = model(img_tensor) _, pred_idx = outputs.max(1) idx_to_class = {0: "Bike", 1: "Car", 2: "Cat", 3: "Dog"} # Map indices to your labels return idx_to_class[pred_idx.item()] # Create Gradio Interface iface = gr.Interface(fn=predict_image, inputs="image", outputs="label", description="Upload an image to classify!") iface.launch()