import os import time import csv import datetime import gradio import schedule from gradio import utils import huggingface_hub from pathlib import Path from src.models.bert import BERTClassifier from src.utils.utilities import Utility model = BERTClassifier(model_name='jeevavijay10/nlp-goemotions-bert') classes = Utility().read_emotion_list() hf_token = os.getenv("HF_TOKEN") dataset_dir = "logs" headers = ["input", "output", "timestamp", "elapsed"] repo = huggingface_hub.Repository( local_dir=dataset_dir, clone_from="https://huggingface.co/datasets/jeevavijay10/senti-pred-gradio", token=hf_token, ) repo.git_pull(lfs=True) def log_record(vals): log_file = Path(dataset_dir) / "data.csv" is_new = not Path(log_file).exists() with open(log_file, "a", newline="", encoding="utf-8") as csvfile: writer = csv.writer(csvfile) if is_new: writer.writerow(utils.sanitize_list_for_csv(headers)) writer.writerow(utils.sanitize_list_for_csv(vals)) schedule.run_pending() print(f"Last Sync: {job.last_run}") def predict(sentence): timestamp = datetime.datetime.now().isoformat() start_time = time.time() predictions = model.evaluate([sentence]) elapsed_time = time.time() - start_time output = classes[predictions[0]] print(f"Sentence: {sentence} \nPrediction: {predictions[0]} - {output}") log_record([sentence, output, timestamp, str(elapsed_time)]) return output def sync_logs(): print(f"Repo Clean: {repo.is_repo_clean()}") if not repo.is_repo_clean(): repo.git_add() repo.git_commit() repo.git_pull(lfs=True) result = repo.git_push() # result = repo.push_to_hub() print(result) job = schedule.every(5).minutes.do(sync_logs) print("Scheduler engaged") gradio.Interface( fn=predict, inputs="text", outputs="text", allow_flagging='never' ).launch()