File size: 11,635 Bytes
f74fca8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17ea062
f74fca8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddb0a5
f74fca8
 
 
 
 
a149a56
6d4d5ee
f74fca8
 
 
 
 
 
 
 
 
 
 
 
4ddb0a5
f74fca8
 
 
 
4ddb0a5
f74fca8
 
4ddb0a5
ad9ffdc
f74fca8
 
 
 
4ddb0a5
a149a56
 
f74fca8
 
 
a149a56
f74fca8
4ddb0a5
f74fca8
 
 
 
 
 
 
 
 
 
 
 
bb63f88
 
58ff803
bb63f88
58ff803
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import gradio as gr
from miditok import REMI
from transformers import PretrainedConfig, PreTrainedModel
from reformer_pytorch import ReformerLM, Reformer
from axial_positional_embedding import AxialPositionalEmbedding
import math
import os
import subprocess
import pytube
import binascii

import torch
from torch import nn
import torchaudio

yt_dir = "./yt_dir"
midi_dir = "./midi_dir"
os.makedirs(yt_dir, exist_ok=True)
os.makedirs(midi_dir, exist_ok=True)

device = "cuda" if torch.cuda.is_available() else "cpu"

# model define

class ReformerEncoderDecoderConfig(PretrainedConfig):
    def __init__(self,
                  vocab_size=50265, 
                  d_model=128,
                  num_heads=8, 
                  encoder_layers=6, 
                  decoder_layers=6, 
                  encoder_max_seq_len=6144,
                  decoder_max_seq_len=4096,
                  encoder_axial_position_shape=(96, 64),
                  decoder_axial_position_shape=(64, 64),
                  pad_token_id=0,
                  bos_token_id=1,
                  eos_token_id=2,
                  **kwargs):
        self.vocab_size = vocab_size
        self.d_model = d_model
        self.num_heads = num_heads
        self.encoder_layers = encoder_layers
        self.decoder_layers = decoder_layers
        self.encoder_max_seq_len = encoder_max_seq_len
        self.decoder_max_seq_len = decoder_max_seq_len
        self.encoder_axial_position_shape = encoder_axial_position_shape
        self.decoder_axial_position_shape = decoder_axial_position_shape
        super().__init__(**kwargs)
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id
        self.eos_token_id = eos_token_id


class ReformerEncoderDecoder(PreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.config = config
        self.pad_token_id = config.pad_token_id
        self.bos_token_id = config.bos_token_id
        self.eos_token_id = config.eos_token_id

        self.encoder = Reformer(
            dim=config.d_model,
            depth=config.encoder_layers,
            heads=config.num_heads,
        )

        self.decoder = ReformerLM(
            dim=config.d_model,
            depth=config.decoder_layers,
            heads=config.num_heads,
            max_seq_len=config.decoder_max_seq_len,
            num_tokens=config.vocab_size,
            axial_position_emb=True,
            axial_position_shape=config.decoder_axial_position_shape,
            causal=True
        )

        self.position_embedding = AxialPositionalEmbedding(
            config.d_model,
            axial_shape=config.encoder_axial_position_shape
        )

    # https://github.com/lucidrains/reformer-pytorch/blob/master/reformer_pytorch/autopadder.py
    def pad_to_multiple(self, tensor, seq_len, multiple, dim=-1):
        m = seq_len / multiple
        if m.is_integer():
            return tensor
        
        remainder = math.ceil(m) * multiple - seq_len
        pad_offset = (0,) * (-1 - dim) * 2
        return nn.functional.pad(tensor, (*pad_offset, 0, remainder), value=self.pad_token_id)

    # https://github.com/lucidrains/reformer-pytorch/blob/master/reformer_pytorch/autopadder.py
    # pad_dim = -1 if its LM model else -2
    def auto_paddding(self, input_ids, pad_dim, bucket_size, num_mem_kv, full_attn_thres, keys=None, input_mask=None, input_attn_mask=None):
        device = input_ids.device

        batch_size, t = input_ids.shape[:2]

        keys_len = 0 if keys is None else keys.shape[1]
        seq_len = t + num_mem_kv + keys_len
        

        if seq_len > full_attn_thres:
            if input_mask is None:
                input_mask = torch.full((batch_size, t), True, dtype=torch.bool, device=device)

            input_ids = self.pad_to_multiple(input_ids, seq_len, bucket_size * 2, dim=pad_dim)

            if input_mask is not None:
                input_mask = nn.functional.pad(input_mask, (0, input_ids.shape[1] - input_mask.shape[1]), value=False)

            if input_attn_mask is not None:
                offset = input_ids.shape[1] - input_attn_mask.shape[1]
                input_attn_mask = nn.functional.pad(input_attn_mask, (0, offset, 0, offset), value=False)

        return input_ids, input_mask, input_attn_mask


    def shift_tokens_right(self, input_ids):
        shifted_input_ids = input_ids.new_zeros(input_ids.shape)
        shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
        shifted_input_ids[:, 0] = self.eos_token_id

        if self.pad_token_id is None:
            raise ValueError("config.pad_token_id has to be defined.")
        # replace possible -100 values in labels by `pad_token_id`
        shifted_input_ids.masked_fill_(shifted_input_ids == -100, self.pad_token_id)

        return shifted_input_ids


    def forward(self, inputs_embeds, attention_mask=None, decoder_input=None, labels=None):
        if decoder_input is None:
            decoder_input = self.shift_tokens_right(labels)

        # encoder
        encoder_input = inputs_embeds + self.position_embedding(inputs_embeds)

        encoder_output = self.encoder(encoder_input, input_mask=attention_mask.bool())

        # decoder
        decoder_output = self.decoder(decoder_input, keys=encoder_output)

        if labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            masked_lm_loss = loss_fct(decoder_output.view(-1, self.config.vocab_size), labels.view(-1))
            return {"loss": masked_lm_loss, "logits": decoder_output}
        
        return {"logits": decoder_output}


    @torch.no_grad()
    def generate(self, inputs_embeds, attention_mask=None, max_length=4096, temperature=1.0, top_k=50, top_p=1):
        is_training = self.training
        device = inputs_embeds.device

        # padding settings
        pad_dim = -1
        bucket_size = self.decoder.reformer.bucket_size
        num_mem_kv = self.decoder.reformer.num_mem_kv
        full_attn_thres = self.decoder.reformer.full_attn_thres

        self.eval()

        # encoder
        encoder_input = inputs_embeds + self.position_embedding(inputs_embeds)

        encoder_keys = self.encoder(encoder_input, input_mask=attention_mask.bool())

        # decoder
        generated = torch.tensor([self.bos_token_id], device=device).unsqueeze(0)

        decoder_mask = torch.full_like(generated, True, dtype=torch.bool, device=device)

        for _ in range(max_length):
            generated = generated[:, -self.config.decoder_max_seq_len:]
            decoder_mask = decoder_mask[:, -self.config.decoder_max_seq_len:]

            generated, decoder_mask, _ = self.auto_paddding(generated, 
                                                             pad_dim, 
                                                             bucket_size, 
                                                             num_mem_kv, 
                                                             full_attn_thres, 
                                                             keys=encoder_keys, 
                                                             input_mask=decoder_mask)
            
            logits = self.decoder(generated, input_mask=decoder_mask, keys=encoder_keys)[:, -1, :]  / temperature

            if top_k > 0:
                top_k_values, top_k_indices = torch.topk(logits, top_k)
                filtered_logits = torch.full_like(logits, -float('Inf'))
                logits = filtered_logits.scatter(1, top_k_indices, top_k_values)

            if top_p < 1.0:
                sorted_logits, sorted_indices = torch.sort(logits, descending=True)
                cumulative_probs = torch.cumsum(nn.functional.softmax(sorted_logits, dim=-1), dim=-1)
                
                sorted_indices_to_remove = cumulative_probs > top_p
                sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone()
                sorted_indices_to_remove[:, 0] = 0

                sorted_logits[sorted_indices_to_remove] = -float('Inf')
                logits = sorted_logits.scatter(1, sorted_indices, sorted_logits)

            probs = nn.functional.softmax(logits, dim=-1)
            next_token = torch.multinomial(probs, num_samples=1)
            generated = torch.cat([generated, next_token], dim=-1)

            if next_token == self.eos_token_id:
                break

        self.train(is_training)
        return generated
    
# model define end

# model load
model = ReformerEncoderDecoder(ReformerEncoderDecoderConfig()).to(device)
model.load_state_dict(torch.load("model.pth", map_location=torch.device(device)))
tokenizer = REMI(params="tokenizer.json")
# model load end
    

class ArrangerEmbedding(nn.Module):
  def __init__(self, arranger_ids=256, hidden_size=128):
    super().__init__()
    self.embeddings = nn.Embedding(arranger_ids, hidden_size)

  def forward(self, arranger_id, mel_db):
    return torch.cat([self.embeddings(arranger_id), mel_db], dim=-2)


def load_input(song_path, arranger_id):
    waveform, sr = torchaudio.load(song_path)
    waveform = torchaudio.transforms.Resample(sr, 22050)(waveform)
    waveform = torch.mean(waveform, dim=0, keepdim=True)

    mel_transform = torchaudio.transforms.MelSpectrogram(sample_rate=sr, n_fft=4096, hop_length=1024, n_mels=128)
    mel = mel_transform(waveform)
    mel_db = torchaudio.transforms.AmplitudeToDB()(mel)

    mel_shape = mel_db.shape
    mel_db = mel_db.reshape(mel_shape[0], mel_shape[2], mel_shape[1])

    if mel_db.shape[2] > 6144:
        mel_db = mel_db[:, :6144]

    num_pad = 6144 - mel_db.shape[1] - 1
    mel_padded = torch.cat([mel_db, torch.zeros((1, num_pad, mel_db.shape[2]))], dim=1)

    embbeding = ArrangerEmbedding()
    input_embed = embbeding(torch.tensor([[int(arranger_id)]]), mel_padded)
    attention_mask = torch.cat([torch.ones(mel_db.shape[:2], dtype=torch.int32), torch.zeros((mel_db.shape[0], num_pad + 1))], dim=1)

    print(input_embed, attention_mask)
    return input_embed, attention_mask


def download_piano(youtube_link):
    yt = pytube.YouTube(youtube_link)
    download_path = os.path.join(yt_dir, f"{binascii.hexlify(os.urandom(8)).decode()}.mp4")
    yt.streams.filter(only_audio=True).first().download(filename=download_path)

    # convert to mp3
    mp3_path = str(download_path).replace(".mp4", ".mp3")
    result = subprocess.run([
        "ffmpeg",
        "-i", download_path,
        mp3_path
    ])

    if result.returncode != 0:
        raise Exception("Failed to convert to mp3")

    print(mp3_path)
    return mp3_path


def inference(yt_link, arranger_id):
    print("downloading")
    song_path = download_piano(yt_link)
    input_embed, attention_mask = load_input(song_path, arranger_id)
    print("generating")
    generated = model.generate(input_embed.to(device), attention_mask.to(device), max_length=100)
    return post_process(generated)


def post_process(generated):
    print("post processing")
    print(generated.argmax(dim=-1).shape)
    midi = tokenizer.decode(generated.argmax(dim=-1).unsqueeze(0).cpu())

    # random name
    output_midi_path = os.path.join(midi_dir, f"{binascii.hexlify(os.urandom(8)).decode()}.mid")
    midi.dump_midi(output_midi_path)

    print("exporting")
    return output_midi_path


app = gr.Interface(
    fn=inference,
    inputs=[
        gr.Textbox(label="Youtube Link"),
        gr.Dropdown([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], label="Arranger ID", value=1)
    ],
    outputs=gr.File(label="MIDI File")
)

try:
  import google.colab
  app.launch(share=True)
except:
  app.launch()