Spaces:
Runtime error
Runtime error
File size: 8,922 Bytes
9aa6aea ce50c4e 9aa6aea ce50c4e 9aa6aea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
# -*- coding: utf-8 -*-
# ===========================================================================================
#
# Copyright (c) Beijing Academy of Artificial Intelligence (BAAI). All rights reserved.
#
# Author : Fan Zhang
# Email : zhangfan@baai.ac.cn
# Institute : Beijing Academy of Artificial Intelligence (BAAI)
# Create On : 2023-12-12 02:54
# Last Modified : 2023-12-20 04:08
# File Name : meta.py
# Description :
#
# ===========================================================================================
import base64
from dataclasses import dataclass, field
import io
from enum import Enum
from PIL import Image
from typing import List, Tuple
import cv2
import numpy as np
from .constants import EVA_IMAGE_SIZE, GRD_SYMBOL, BOP_SYMBOL, EOP_SYMBOL, BOO_SYMBOL, EOO_SYMBOL
from .constants import DEFAULT_VIDEO_TOKEN, DEFAULT_EOS_TOKEN, USER_TOKEN, ASSISTANT_TOKEN, FAKE_VIDEO_END_TOKEN
from .utils import gen_id, frontend_logger as logging
class Role(Enum):
UNKNOWN = 0,
USER = 1,
ASSISTANT = 2,
class DataType(Enum):
UNKNOWN = 0,
TEXT = 1,
IMAGE = 2,
GROUNDING = 3,
VIDEO = 4,
ERROR = 5,
@dataclass
class DataMeta:
datatype: DataType = DataType.UNKNOWN
text: str = None
image: Image.Image = None
mask: Image.Image = None
coordinate: List[int] = None
frames: List[Image.Image] = None
stack_frame: Image.Image = None
@property
def grounding(self):
return self.coordinate is not None
@property
def text_str(self):
return self.text
@property
def image_str(self):
return self.image2str(self.image)
@property
def video_str(self):
ret = f'<div style="overflow:scroll"><b>[VIDEO]</b></div>{self.image2str(self.stack_frame)}'
return ret
@property
def grounding_str(self):
ret = ""
if self.text is not None:
ret += f'<div style="overflow:scroll"><b>[PHRASE]</b>{self.text}</div>'
ret += self.image2str(self.mask)
if self.image is not None:
ret += self.image2str(self.image)
return ret
def image2str(self, image):
buf = io.BytesIO()
image.save(buf, format="WEBP")
i_str = base64.b64encode(buf.getvalue()).decode()
return f'<div style="float:left"><img src="data:image/png;base64, {i_str}"></div>'
def format_chatbot(self):
match self.datatype:
case DataType.TEXT:
return self.text_str
case DataType.IMAGE:
return self.image_str
case DataType.VIDEO:
return self.video_str
case DataType.GROUNDING:
return self.grounding_str
case _:
return ""
def format_prompt(self) -> List[str | Image.Image]:
match self.datatype:
case DataType.TEXT:
return [self.text]
case DataType.IMAGE:
return [self.image]
case DataType.VIDEO:
return [DEFAULT_VIDEO_TOKEN] + self.frames + [FAKE_VIDEO_END_TOKEN]
case DataType.GROUNDING:
ret = []
if self.text is not None:
ret.append(f"{BOP_SYMBOL}{self.text}{EOP_SYMBOL}")
ret += [BOO_SYMBOL, self.mask, EOO_SYMBOL]
if self.image is not None:
ret.append(self.image)
return ret
case _:
return []
def __str__(self):
s = ""
if self.text is not None:
s += f"T:{self.text}"
if self.image is not None:
w, h = self.image.size
s += f"[I:{h}x{w}]"
if self.coordinate is not None:
l, t, r, b = self.coordinate
s += f"[C:({l:03d},{t:03d}),({r:03d},{b:03d})]"
if self.frames is not None:
w, h = self.frames[0].size
s += f"[V:{len(self.frames)}x{h}x{w}]"
return s
@classmethod
def build(cls, text=None, image=None, coordinate=None, frames=None, is_error=False, *, resize: bool = True):
ins = cls()
ins.text = text if text != "" else None
ins.image = cls.resize(image, force=resize)
# ins.image = image
ins.coordinate = cls.fix(coordinate)
ins.frames = cls.resize(frames, force=resize)
# ins.frames = frames
if is_error:
ins.datatype = DataType.ERROR
elif coordinate is not None:
ins.datatype = DataType.GROUNDING
ins.draw_box()
elif image is not None:
ins.datatype = DataType.IMAGE
elif text is not None:
ins.datatype = DataType.TEXT
else:
ins.datatype = DataType.VIDEO
ins.stack()
return ins
@classmethod
def fix(cls, coordinate):
if coordinate is None:
return None
l, t, r, b = coordinate
l = min(EVA_IMAGE_SIZE, max(0, l))
t = min(EVA_IMAGE_SIZE, max(0, t))
r = min(EVA_IMAGE_SIZE, max(0, r))
b = min(EVA_IMAGE_SIZE, max(0, b))
return min(l, r), min(t, b), max(l, r), max(t, b)
@classmethod
def resize(cls, image: Image.Image | List[Image.Image] | None, *, force: bool = True):
if image is None:
return None
if not force:
return image
if isinstance(image, Image.Image):
image = [image]
for idx, im in enumerate(image):
w, h = im.size
if w < h:
h = int(EVA_IMAGE_SIZE / w * h)
w = EVA_IMAGE_SIZE
else:
w = int(EVA_IMAGE_SIZE / h * w)
h = EVA_IMAGE_SIZE
image[idx] = im.resize((w, h))
return image if len(image) > 1 else image[0]
def draw_box(self):
left, top, right, bottom = self.coordinate
mask = np.zeros((EVA_IMAGE_SIZE, EVA_IMAGE_SIZE, 3), dtype=np.uint8)
mask = cv2.rectangle(mask, (left, top), (right, bottom), (255, 255, 255), 3)
self.mask = Image.fromarray(mask)
def stack(self):
w, h = self.frames[0].size
n = len(self.frames)
stack_frame = Image.new(mode="RGB", size=(w*n, h))
for idx, f in enumerate(self.frames):
stack_frame.paste(f, (idx*w, 0))
self.stack_frame = stack_frame
class ConvMeta:
def __init__(self):
self.system: str = "You are a helpful assistant, dedicated to delivering comprehensive and meticulous responses."
self.message: List[Tuple[Role, DataMeta]] = []
self.log_id: str = gen_id()
logging.info(f"{self.log_id}: create new round of chat")
def append(self, r: Role, p: DataMeta):
logging.info(f"{self.log_id}: APPEND [{r.name}] prompt element, type: {p.datatype.name}, message: {p}")
self.message.append((r, p))
def format_chatbot(self):
ret = []
for r, p in self.message:
cur_p = p.format_chatbot()
if r == Role.USER:
ret.append((cur_p, None))
else:
ret.append((None, cur_p))
return ret
def format_prompt(self):
ret = []
has_coor = False
for _, p in self.message:
has_coor |= (p.datatype == DataType.GROUNDING)
ret += p.format_prompt()
if has_coor:
ret.insert(0, GRD_SYMBOL)
logging.info(f"{self.log_id}: format generation prompt: {ret}")
return ret
def format_chat(self):
ret = [self.system]
prev_r = None
for r, p in self.message:
if prev_r != r:
if prev_r == Role.ASSISTANT:
ret.append(f"{DEFAULT_EOS_TOKEN}{USER_TOKEN}: ")
elif prev_r is None:
ret.append(f" {USER_TOKEN}: ")
else:
ret.append(f" {ASSISTANT_TOKEN}: ")
ret += p.format_prompt()
prev_r = r
else:
ret += p.format_prompt()
ret.append(f" {ASSISTANT_TOKEN}:")
logging.info(f"{self.log_id}: format chat prompt: {ret}")
return ret
def clear(self):
logging.info(f"{self.log_id}: clear chat history, end current chat round.")
del self.message
self.message = []
self.log_id = gen_id()
def pop(self):
if self.has_gen:
logging.info(f"{self.log_id}: pop out previous generation / chat result")
self.message.pop()
def pop_error(self):
self.message = [(r, p) for r, p in self.message if p.datatype != DataType.ERROR]
@property
def has_gen(self):
if len(self.message) == 0:
return False
if self.message[-1][0] == Role.USER:
return False
return True
|