# -*- coding: utf-8 -*- # =================================================== # # Author : Fan Zhang # Email : zhangfan@baai.ac.cn # Institute : Beijing Academy of Artificial Intelligence (BAAI) # Create On : 2023-12-12 18:05 # Last Modified : 2023-12-20 05:25 # File Name : chat_frontend.py # Description : # # =================================================== import json import io import time from PIL import Image import requests import gradio as gr from .meta import ConvMeta, Role, DataMeta from .utils import extract_frames from .utils import frontend_logger as logging CONTROLLER_URL = "" def submit( meta, image, video, text, num_frames, ): if meta is None: meta = ConvMeta() meta.pop_error() check_text = (text != "" and text is not None) check_image = image is not None check_video = video is not None if check_text + check_image + check_video != 1: logging.info(f"{meta.log_id}: invalid input: give multi madality simultaneously for single modality input") gr.Error("Invalid input number, must give exactly one modality input at a time") return meta.format_chatbot(), meta, None, None, "" if check_text: meta.append(Role.USER, DataMeta.build(text=text)) elif check_image: meta.append(Role.USER, DataMeta.build(image=image)) elif check_video: frames = extract_frames(video, num_frames) meta.append(Role.USER, DataMeta.build(frames=frames)) return meta.format_chatbot(), meta, None, None, "" def clear_history(meta): if meta is None: meta = ConvMeta() meta.clear() return meta.format_chatbot(), meta def generate( meta, do_sample, max_new_tokens, temperature, top_k, top_p, length_penalty, num_beams, repetition_penalty, ): if meta is None: meta = ConvMeta() meta.pop_error() meta.pop() prompt = meta.format_chat() prompt_list, image_list = [], {} for idx, p in enumerate(prompt): if isinstance(p, Image.Image): key = f"[]" prompt_list.append(["IMAGE", key]) buf = io.BytesIO() p.save(buf, format="PNG") image_list[key] = (key, io.BytesIO(buf.getvalue()), "image/png") else: prompt_list.append(["TEXT", p]) if len(image_list) == 0: image_list = None logging.info(f"{meta.log_id}: construct chat reqeust with prompt {prompt_list}") t0 = time.time() try: print(do_sample) rsp = requests.post( CONTROLLER_URL + "/v1/mmc", files=image_list, data={ "log_id": meta.log_id, "prompt": json.dumps(prompt_list), "do_sample": do_sample, "max_new_tokens": max_new_tokens, "temperature": temperature, "top_k": top_k, "top_p": top_p, "length_penalty": length_penalty, "num_beams": num_beams, "repetition_penalty": repetition_penalty, }, ) except: rsp = requests.Response() rsp.status_code = 1099 t1 = time.time() logging.info(f"{meta.log_id}: get response with status code: {rsp.status_code}, time: {(t1-t0)*1000:.3f}ms") if rsp.ok: content = json.loads(rsp.text) if content["code"] == 0: meta.append(Role.ASSISTANT, DataMeta.build(text=content["data"])) else: meta.append(Role.ASSISTANT, DataMeta.build(text=f"GENERATE FAILED: {content['data']}", is_error=True)) else: meta.append(Role.ASSISTANT, DataMeta.build(text=f"GENERATE FAILED: http failed with code {rsp.status_code}", is_error=True)) return meta.format_chatbot(), meta def build_chat(args): global CONTROLLER_URL CONTROLLER_URL = args.controller_url with gr.Blocks(title="Emu", theme=gr.themes.Default(primary_hue="blue", secondary_hue="blue")) as demo: state = gr.State() with gr.Row(): with gr.Column(scale=2): with gr.Row(): imagebox = gr.Image(type="pil") with gr.Row(): videobox = gr.Video() with gr.Accordion("Parameters", open=True, visible=True) as parameter_row: do_sample = gr.Checkbox(value=False, label="Do Sample", interactive=True) max_new_tokens = gr.Slider(minimum=0, maximum=2048, value=512, step=1, interactive=True, label="Max Output Tokens") temperature = gr.Slider(minimum=0, maximum=1, value=0.7, step=0.05, interactive=True, label="Temperature") top_k = gr.Slider(minimum=1, maximum=5, value=3, step=1, interactive=True, label="Top K") top_p = gr.Slider(minimum=0, maximum=1, value=0.9, step=0.05, interactive=True, label="Top P") length_penalty = gr.Slider(minimum=0, maximum=5, value=3, step=0.1, interactive=True, label="Length Penalty") num_beams = gr.Slider(minimum=1, maximum=10, value=5, step=1, interactive=True, label="Beam Size") repetition_penalty = gr.Slider(minimum=1.0, maximum=10.0, value=1.0, step=0.5, interactive=True, label="Repetition Penalty") num_frames = gr.Number(interactive=True, value=8, maximum=12, label="Num Video Frames") with gr.Column(scale=6): chatbot = gr.Chatbot( elem_id="chatbot", label="Emu Chatbot", visible=True, height=1070, ) with gr.Row(): with gr.Column(scale=8): textbox = gr.Textbox( show_label=False, placeholder="Enter text and add to prompt", visible=True, container=False, ) with gr.Column(scale=1, min_width=60): add_btn = gr.Button(value="Add") with gr.Row(visible=True) as button_row: # upvote_btn = gr.Button(value="👍 Upvote", interactive=False) # downvote_btn = gr.Button(value="👎 Downvote", interactive=False) # flag_btn = gr.Button(value="⚠️ Flag", interactive=False) # regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False) clear_btn = gr.Button(value="🗑️ Clear History") generate_btn = gr.Button(value="Generate") clear_btn.click(clear_history, inputs=state, outputs=[chatbot, state]) textbox.submit( submit, inputs=[ state, imagebox, videobox, textbox, num_frames, ], outputs=[ chatbot, state, imagebox, videobox, textbox, ], ) add_btn.click( submit, inputs=[ state, imagebox, videobox, textbox, num_frames, ], outputs=[ chatbot, state, imagebox, videobox, textbox, ], ) generate_btn.click( generate, inputs=[ state, do_sample, max_new_tokens, temperature, top_k, top_p, length_penalty, num_beams, repetition_penalty, ], outputs=[ chatbot, state, ], ) return demo