Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
from PIL import Image | |
from transformers import AutoTokenizer, AutoModel, AutoImageProcessor, AutoModelForCausalLM | |
from transformers.generation.configuration_utils import GenerationConfig | |
from transformers.generation import LogitsProcessorList, PrefixConstrainedLogitsProcessor, UnbatchedClassifierFreeGuidanceLogitsProcessor | |
import torch | |
from emu3.mllm.processing_emu3 import Emu3Processor | |
# model path | |
EMU_HUB = "BAAI/Emu3-Gen" | |
VQ_HUB = "BAAI/Emu3-VisionTokenizer" | |
# prepare model and processor | |
model = AutoModelForCausalLM.from_pretrained( | |
EMU_HUB, | |
device_map="cuda:0", | |
torch_dtype=torch.bfloat16, | |
attn_implementation="flash_attention_2", | |
trust_remote_code=True, | |
) | |
tokenizer = AutoTokenizer.from_pretrained(EMU_HUB, trust_remote_code=True) | |
image_processor = AutoImageProcessor.from_pretrained(VQ_HUB, trust_remote_code=True) | |
image_tokenizer = AutoModel.from_pretrained(VQ_HUB, device_map="cuda:0", trust_remote_code=True).eval() | |
processor = Emu3Processor(image_processor, image_tokenizer, tokenizer) | |
# prepare input | |
POSITIVE_PROMPT = " masterpiece, film grained, best quality." | |
NEGATIVE_PROMPT = "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry." | |
classifier_free_guidance = 3.0 | |
prompt = "a portrait of young girl." | |
prompt += POSITIVE_PROMPT | |
kwargs = dict( | |
mode='G', | |
ratio="1:1", | |
image_area=model.config.image_area, | |
return_tensors="pt", | |
) | |
pos_inputs = processor(text=prompt, **kwargs) | |
neg_inputs = processor(text=NEGATIVE_PROMPT, **kwargs) | |
# prepare hyper parameters | |
GENERATION_CONFIG = GenerationConfig( | |
use_cache=True, | |
eos_token_id=model.config.eos_token_id, | |
pad_token_id=model.config.pad_token_id, | |
max_new_tokens=40960, | |
do_sample=True, | |
top_k=2048, | |
) | |
h, w = pos_inputs.image_size[0] | |
constrained_fn = processor.build_prefix_constrained_fn(h, w) | |
logits_processor = LogitsProcessorList([ | |
UnbatchedClassifierFreeGuidanceLogitsProcessor( | |
classifier_free_guidance, | |
model, | |
unconditional_ids=neg_inputs.input_ids.to("cuda:0"), | |
), | |
PrefixConstrainedLogitsProcessor( | |
constrained_fn , | |
num_beams=1, | |
), | |
]) | |
# generate | |
outputs = model.generate( | |
pos_inputs.input_ids.to("cuda:0"), | |
GENERATION_CONFIG, | |
logits_processor=logits_processor | |
) | |
mm_list = processor.decode(outputs[0]) | |
for idx, im in enumerate(mm_list): | |
if not isinstance(im, Image.Image): | |
continue | |
im.save(f"result_{idx}.png") | |