Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2024 The Emu team, BAAI and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Emu3VisionVQ model """ | |
import math | |
from typing import Optional, Tuple, Union | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from transformers.modeling_utils import PreTrainedModel | |
from .configuration_emu3visionvq import Emu3VisionVQConfig | |
class Emu3VisionVQActivation(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def __call__(self, x: torch.Tensor): | |
return x * torch.sigmoid(x) | |
class Emu3VisionVQUpsample(nn.Module): | |
def __init__(self, in_channels: int): | |
super().__init__() | |
self.conv = nn.Conv2d( | |
in_channels, | |
in_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
) | |
def forward(self, x: torch.Tensor): | |
x = F.interpolate(x, scale_factor=2.0, mode="nearest") | |
x = self.conv(x) | |
return x | |
class Emu3VisionVQDownsample(nn.Module): | |
def __init__(self, in_channels: int): | |
super().__init__() | |
self.conv = nn.Conv2d( | |
in_channels, | |
in_channels, | |
kernel_size=3, | |
stride=2, | |
padding=0, | |
) | |
def forward(self, x: torch.Tensor): | |
pad = (0, 1, 0, 1) | |
x = F.pad(x, pad, mode="constant", value=0) | |
x = self.conv(x) | |
return x | |
class Emu3VisionVQCausalConv3d(nn.Module): | |
def __init__( | |
self, | |
in_channel: int, | |
out_channel: int, | |
kernel_size: Union[int, Tuple[int, ...]] = (3, 1, 1), | |
stride: Union[int, Tuple[int, ...]] = (1, 1, 1), | |
): | |
super().__init__() | |
if isinstance(kernel_size, int): | |
kernel_size = (kernel_size,) * 3 | |
if isinstance(stride, int): | |
stride = (stride,) * 3 | |
hw_pad = [k - s for k, s in zip(kernel_size[1:], stride[1:])] | |
self.padding = tuple() | |
for p in hw_pad[::-1]: | |
self.padding += (p // 2 + p % 2, p // 2) | |
self.padding += (2, 0) | |
self.conv = nn.Conv3d( | |
in_channel, | |
out_channel, | |
kernel_size, | |
stride=stride, | |
) | |
def forward(self, x: torch.Tensor): | |
x = F.pad(x, self.padding) | |
x = self.conv(x) | |
return x | |
class Emu3VisionVQResnetTemporalBlock(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: Optional[int] = None, | |
conv_shortcut: bool = False, | |
dropout: float = 0.0, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
stride = (1, 1, 1) | |
kernel_size = (3, 3, 3) | |
self.norm1 = nn.BatchNorm3d(in_channels) | |
self.conv1 = Emu3VisionVQCausalConv3d( | |
in_channels, | |
out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
) | |
self.norm2 = nn.BatchNorm3d(out_channels) | |
self.dropout = nn.Dropout(dropout) | |
self.conv2 = Emu3VisionVQCausalConv3d( | |
out_channels, | |
out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
) | |
self.act = Emu3VisionVQActivation() | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
self.conv_shortcut = Emu3VisionVQCausalConv3d( | |
in_channels, | |
out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
) | |
else: | |
self.nin_shortcut = nn.Conv3d( | |
in_channels, | |
out_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
) | |
def forward(self, x: torch.Tensor): | |
h = self.norm1(x) | |
h = self.act(h) | |
h = self.conv1(h) | |
h = self.norm2(h) | |
h = self.act(h) | |
h = self.dropout(h) | |
h = self.conv2(h) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
x = self.conv_shortcut(x) | |
else: | |
x = self.nin_shortcut(x) | |
return x + h | |
class Emu3VisionVQSpatialNorm(nn.Module): | |
def __init__( | |
self, | |
f_channels: int, | |
zq_channels: int, | |
norm_layer: nn.Module = nn.GroupNorm, | |
add_conv: bool = False, | |
num_groups: int = 32, | |
eps: float = 1e-6, | |
affine: bool = True, | |
): | |
super().__init__() | |
self.norm_layer = norm_layer( | |
num_channels=f_channels, | |
num_groups=num_groups, | |
eps=eps, | |
affine=affine, | |
) | |
self.add_conv = add_conv | |
if self.add_conv: | |
self.conv = nn.Conv2d( | |
zq_channels, | |
zq_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
) | |
self.conv_y = nn.Conv2d( | |
zq_channels, | |
f_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
) | |
self.conv_b = nn.Conv2d( | |
zq_channels, | |
f_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
) | |
def forward(self, x: torch.Tensor, zq: torch.Tensor): | |
zq = F.interpolate(zq, size=x.shape[-2:], mode="nearest") | |
if self.add_conv: | |
zq = self.conv(zq) | |
x = self.norm_layer(x) | |
x = x * self.conv_y(zq) + self.conv_b(zq) | |
return x | |
class Emu3VisionVQResnetBlock(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: Optional[int] = None, | |
conv_shortcut: bool = False, | |
dropout: float = 0.0, | |
zq_ch: Optional[int] = None, | |
add_conv: bool = False, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
self.zq_ch = zq_ch | |
if zq_ch is None: | |
norm_kwargs = dict(num_groups=32, eps=1e-6, affine=True) | |
self.norm1 = nn.GroupNorm(num_channels=in_channels, **norm_kwargs) | |
self.norm2 = nn.GroupNorm(num_channels=out_channels, **norm_kwargs) | |
else: | |
self.norm1 = Emu3VisionVQSpatialNorm(in_channels, zq_ch, add_conv=add_conv) | |
self.norm2 = Emu3VisionVQSpatialNorm(out_channels, zq_ch, add_conv=add_conv) | |
self.conv1 = nn.Conv2d( | |
in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
) | |
self.dropout = nn.Dropout(dropout) | |
self.conv2 = nn.Conv2d( | |
out_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
) | |
self.act = Emu3VisionVQActivation() | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
self.conv_shortcut = nn.Conv2d( | |
in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
) | |
else: | |
self.nin_shortcut = nn.Conv2d( | |
in_channels, | |
out_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
) | |
def forward(self, x: torch.Tensor, zq: Optional[torch.Tensor] = None): | |
norm_args = tuple() if self.zq_ch is None else (zq, ) | |
h = self.norm1(x, *norm_args) | |
h = self.act(h) | |
h = self.conv1(h) | |
h = self.norm2(h, *norm_args) | |
h = self.act(h) | |
h = self.dropout(h) | |
h = self.conv2(h) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
x = self.conv_shortcut(x) | |
else: | |
x = self.nin_shortcut(x) | |
return x + h | |
class Emu3VisionVQAttnBlock(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
zq_ch: Optional[int] = None, | |
add_conv: bool = False | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.zq_ch = zq_ch | |
if zq_ch is None: | |
norm_kwargs = dict(num_groups=32, eps=1e-6, affine=True) | |
self.norm = nn.GroupNorm(num_channels=in_channels, **norm_kwargs) | |
else: | |
self.norm = Emu3VisionVQSpatialNorm(in_channels, zq_ch, add_conv=add_conv) | |
self.q = nn.Conv2d( | |
in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
) | |
self.k = nn.Conv2d( | |
in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
) | |
self.v = nn.Conv2d( | |
in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
) | |
self.proj_out = nn.Conv2d( | |
in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
) | |
def forward(self, x: torch.Tensor, zq: Optional[torch.Tensor] = None): | |
norm_args = tuple() if self.zq_ch is None else (zq, ) | |
nx = self.norm(x, *norm_args) | |
q = self.q(nx) | |
k = self.k(nx) | |
v = self.v(nx) | |
# compute attention | |
b, c, h, w = q.shape | |
q = q.reshape(b, c, h * w) | |
k = k.reshape(b, c, h * w) | |
score = torch.bmm(q.permute(0, 2, 1), k) | |
score = score / (c ** 0.5) | |
score = F.softmax(score, dim=2) | |
# attend to values | |
v = v.reshape(b, c, h * w) | |
v = torch.bmm(v, score.permute(0, 2, 1)) | |
v = v.reshape(b, c, h, w) | |
v = self.proj_out(v) | |
return x + v | |
class Emu3VisionVQTemporalUpsample(nn.Module): | |
def __init__( | |
self, | |
in_channel: int, | |
out_channel: int, | |
kernel_size: Tuple[int, ...] = (3, 3, 3), | |
stride: Tuple[int, ...] = (1, 1, 1) | |
): | |
super().__init__() | |
self.in_channel = in_channel | |
self.out_channel = out_channel | |
self.conv = Emu3VisionVQCausalConv3d( | |
in_channel, | |
out_channel, | |
kernel_size, | |
stride=stride, | |
) | |
def forward(self, x: torch.Tensor): | |
b, c, t, h, w = x.shape | |
x = x.permute(0, 1, 3, 4, 2).contiguous().view(b, -1, t) | |
x = F.interpolate(x, scale_factor=2.0, mode="nearest") | |
x = x.view(b, c, h, w, -1).permute(0, 1, 4, 2, 3).contiguous() | |
x = self.conv(x) | |
return x | |
class Emu3VisionVQTemporalDownsample(nn.Module): | |
def __init__( | |
self, | |
in_channel: int, | |
out_channel: int, | |
kernel_size: Tuple[int, ...] = (4, 3, 3), | |
stride: Tuple[int, ...] = (2, 1, 1), | |
): | |
super().__init__() | |
self.in_channel = in_channel | |
self.out_channel = out_channel | |
self.kernel_size = kernel_size | |
self.conv = Emu3VisionVQCausalConv3d( | |
in_channel, | |
out_channel, | |
kernel_size=kernel_size, | |
stride=stride, | |
) | |
def forward(self, x: torch.Tensor): | |
x = self.conv(x) | |
return x | |
class Emu3VisionVQVectorQuantizer(nn.Module): | |
def __init__(self, config: Emu3VisionVQConfig): | |
super().__init__() | |
self.embedding = nn.Embedding(config.codebook_size, config.embed_dim) | |
self.embedding.weight.data.uniform_(-1.0 / config.codebook_size, 1.0 / config.codebook_size) | |
def forward(self, x: torch.Tensor): | |
# b t c h w -> b t h w c | |
b, t, c, h, w = x.shape | |
x = x.permute(0, 1, 3, 4, 2).contiguous() | |
x_flattened = x.view(-1, c) | |
codebook = self.embedding.weight | |
d = torch.sum(x_flattened ** 2, dim=1, keepdim=True) + \ | |
torch.sum(codebook ** 2, dim=1) - 2 * \ | |
torch.einsum('bd,dn->bn', x_flattened, codebook.permute(1, 0)) | |
indices = torch.argmin(d, dim=1) | |
indices = indices.view(b, t, h, w) | |
return indices | |
class Emu3VisionVQEncoder(nn.Module): | |
def __init__(self, config: Emu3VisionVQConfig): | |
super().__init__() | |
self.ch = config.ch | |
self.num_resolutions = len(config.ch_mult) | |
self.num_res_blocks = config.num_res_blocks | |
self.in_channels = config.in_channels | |
# downsampling | |
self.conv_in = nn.Conv2d( | |
self.in_channels, | |
self.ch, | |
kernel_size=3, | |
stride=1, | |
padding=1 | |
) | |
in_ch_mult = (1,) + tuple(config.ch_mult) | |
self.down = nn.ModuleList() | |
for i_level in range(self.num_resolutions): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_in = config.ch * in_ch_mult[i_level] | |
block_out = config.ch * config.ch_mult[i_level] | |
for i_block in range(self.num_res_blocks): | |
block.append( | |
Emu3VisionVQResnetBlock( | |
in_channels=block_in, | |
out_channels=block_out, | |
dropout=config.dropout, | |
) | |
) | |
block_in = block_out | |
if i_level in config.attn_resolutions: | |
attn.append(Emu3VisionVQAttnBlock(block_in)) | |
down = nn.Module() | |
down.block = block | |
down.attn = attn | |
if i_level != self.num_resolutions - 1: | |
down.downsample = Emu3VisionVQDownsample(block_in) | |
self.down.append(down) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = Emu3VisionVQResnetBlock( | |
in_channels=block_in, | |
out_channels=block_in, | |
dropout=config.dropout, | |
) | |
self.mid.attn_1 = Emu3VisionVQAttnBlock(block_in) | |
self.mid.block_2 = Emu3VisionVQResnetBlock( | |
in_channels=block_in, | |
out_channels=block_in, | |
dropout=config.dropout, | |
) | |
# end | |
self.norm_out = nn.GroupNorm(num_channels=block_in, num_groups=32, eps=1e-6, affine=True) | |
out_z_channels = 2 * config.z_channels if config.double_z else config.z_channels | |
self.conv_out = nn.Conv2d( | |
block_in, | |
out_z_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
) | |
temporal_down_blocks = int(math.log2(config.temporal_downsample_factor)) | |
self.time_conv = nn.ModuleList() | |
for i in range(temporal_down_blocks): | |
conv = Emu3VisionVQTemporalDownsample(out_z_channels, out_z_channels) | |
self.time_conv.append(conv) | |
self.time_res_stack = nn.Sequential(*[ | |
Emu3VisionVQResnetTemporalBlock( | |
in_channels=out_z_channels, | |
out_channels=out_z_channels, | |
dropout=config.dropout, | |
) for _ in range(self.num_res_blocks) | |
]) | |
self.act = Emu3VisionVQActivation() | |
def forward(self, x: torch.Tensor): | |
t = x.shape[1] | |
x = x.reshape(-1, *x.shape[2:]) | |
# downsampling | |
h = self.conv_in(x) | |
for i_level in range(self.num_resolutions): | |
for i_block in range(self.num_res_blocks): | |
h = self.down[i_level].block[i_block](h) | |
if len(self.down[i_level].attn) > 0: | |
h = self.down[i_level].attn[i_block](h) | |
if i_level != self.num_resolutions - 1: | |
h = self.down[i_level].downsample(h) | |
h = self.mid.block_1(h) | |
h = self.mid.attn_1(h) | |
h = self.mid.block_2(h) | |
# end | |
h = self.norm_out(h) | |
h = self.act(h) | |
h = self.conv_out(h) | |
h = h.reshape(-1, t, *h.shape[1:]) | |
h = h.permute(0, 2, 1, 3, 4) | |
for conv in self.time_conv: | |
h = self.act(conv(h)) | |
h = self.time_res_stack(h) | |
h = h.permute(0, 2, 1, 3, 4) | |
return h | |
class Emu3VisionVQDecoder(nn.Module): | |
def __init__(self, config: Emu3VisionVQConfig): | |
super().__init__() | |
self.ch = config.ch | |
self.num_resolutions = len(config.ch_mult) | |
self.num_res_blocks = config.num_res_blocks | |
in_ch_mult = (1,) + tuple(config.ch_mult) | |
zq_ch = config.embed_dim | |
block_in = config.ch * config.ch_mult[-1] | |
self.time_res_stack = nn.Sequential(*[ | |
Emu3VisionVQResnetTemporalBlock( | |
in_channels=config.z_channels, | |
out_channels=config.z_channels, | |
dropout=config.dropout, | |
) for _ in range(config.num_res_blocks) | |
]) | |
tempo_upsample_block_num = int(math.log2(config.temporal_downsample_factor)) | |
self.time_conv = nn.ModuleList() | |
for i in range(tempo_upsample_block_num): | |
conv = Emu3VisionVQTemporalUpsample(config.z_channels, config.z_channels) | |
self.time_conv.append(conv) | |
self.conv_in = nn.Conv2d( | |
config.z_channels, | |
block_in, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = Emu3VisionVQResnetBlock( | |
in_channels=block_in, | |
out_channels=block_in, | |
dropout=config.dropout, | |
zq_ch=zq_ch, | |
) | |
self.mid.attn_1 = Emu3VisionVQAttnBlock(block_in, zq_ch) | |
self.mid.block_2 = Emu3VisionVQResnetBlock( | |
in_channels=block_in, | |
out_channels=block_in, | |
dropout=config.dropout, | |
zq_ch=zq_ch, | |
) | |
# upsampling | |
self.up = nn.ModuleList() | |
for i_level in reversed(range(self.num_resolutions)): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_out = config.ch * config.ch_mult[i_level] | |
for i_block in range(self.num_res_blocks + 1): | |
block.append( | |
Emu3VisionVQResnetBlock( | |
in_channels=block_in, | |
out_channels=block_out, | |
dropout=config.dropout, | |
zq_ch=zq_ch, | |
) | |
) | |
block_in = block_out | |
if i_level in config.attn_resolutions: | |
attn.append(Emu3VisionVQAttnBlock(block_in, zq_ch)) | |
up = nn.Module() | |
up.block = block | |
up.attn = attn | |
if i_level != 0: | |
up.upsample = Emu3VisionVQUpsample(block_in) | |
self.up.insert(0, up) | |
self.act = Emu3VisionVQActivation() | |
self.norm_out = Emu3VisionVQSpatialNorm(block_in, zq_ch) | |
self.conv_out = nn.Conv2d( | |
block_in, | |
config.out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
) | |
def forward(self, z: torch.Tensor, zq: torch.Tensor): | |
z_zq = torch.cat((z, zq), dim=0) | |
z_zq = z_zq.permute(0, 2, 1, 3, 4) | |
z_zq = self.time_res_stack(z_zq) | |
for conv in self.time_conv: | |
z_zq = self.act(conv(z_zq)) | |
z_zq = z_zq.permute(0, 2, 1, 3, 4) | |
h, zq = torch.chunk(z_zq, 2, dim=0) | |
h = h.reshape(-1, *h.shape[2:]) | |
zq = zq.reshape(-1, *zq.shape[2:]) | |
h = self.conv_in(h) | |
# middle | |
h = self.mid.block_1(h, zq) | |
h = self.mid.attn_1(h, zq) | |
h = self.mid.block_2(h, zq) | |
# upsampling | |
for i_level in reversed(range(self.num_resolutions)): | |
for i_block in range(self.num_res_blocks+1): | |
h = self.up[i_level].block[i_block](h, zq) | |
if len(self.up[i_level].attn) > 0: | |
h = self.up[i_level].attn[i_block](h, zq) | |
if i_level != 0: | |
h = self.up[i_level].upsample(h) | |
h = self.norm_out(h, zq) | |
h = self.act(h) | |
h = self.conv_out(h) | |
return h | |
class Emu3VisionVQPretrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = Emu3VisionVQConfig | |
base_model_prefix = "emuvideovq" | |
main_input_name = "pixel_values" | |
_no_split_modules = ["Emu3VisionVQResnetBlock", "Emu3VisionVQAttnBlock", "Emu3VisionVQResnetTemporalBlock"] | |
def _init_weights(self, module): | |
if isinstance(module, (nn.Conv2d, nn.Conv3d)): | |
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu") | |
# copied from the `reset_parameters` method of `class Linear(Module)` in `torch`. | |
elif isinstance(module, nn.Linear): | |
nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5)) | |
if module.bias is not None: | |
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight) | |
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0 | |
nn.init.uniform_(module.bias, -bound, bound) | |
elif isinstance(module, (nn.BatchNorm2d, nn.BatchNorm3d, nn.GroupNorm)): | |
nn.init.constant_(module.weight, 1) | |
nn.init.constant_(module.bias, 0) | |
class Emu3VisionVQModel(Emu3VisionVQPretrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.config = config | |
self.encoder = Emu3VisionVQEncoder(config) | |
self.decoder = Emu3VisionVQDecoder(config) | |
self.quantize = Emu3VisionVQVectorQuantizer(config) | |
self.quant_conv = Emu3VisionVQCausalConv3d(config.z_channels, config.embed_dim) | |
self.post_quant_conv = Emu3VisionVQCausalConv3d(config.embed_dim, config.z_channels) | |
self.spatial_scale_factor = 2 ** (len(config.ch_mult) - 1) | |
self.post_init() | |
def encode(self, x: torch.Tensor): | |
ndim = x.ndim | |
if ndim == 4: | |
t = self.config.temporal_downsample_factor | |
b, c, h, w = x.shape | |
x = x.unsqueeze(1).repeat(1, t, 1, 1, 1) | |
elif ndim == 5: | |
b, t, c, h, w = x.shape | |
h = self.encoder(x) | |
# b t c h w -> b c t h w | |
h = h.permute(0, 2, 1, 3, 4) | |
h = self.quant_conv(h) | |
# b c t h w -> b t c h w | |
h = h.permute(0, 2, 1, 3, 4) | |
codes = self.quantize(h) | |
if ndim == 4: | |
codes = codes.squeeze(1) | |
return codes | |
def decode(self, x: torch.Tensor): | |
ndim = x.ndim | |
if ndim == 3: | |
x = x.unsqueeze(1) | |
b, t, h, w = x.shape | |
quant = self.quantize.embedding(x.flatten()) | |
c = quant.shape[-1] | |
quant = quant.view(b, t, h, w, c).permute(0, 4, 1, 2, 3).contiguous() | |
quant2 = self.post_quant_conv(quant) | |
quant = quant.permute(0, 2, 1, 3, 4) | |
quant2 = quant2.permute(0, 2, 1, 3, 4) | |
video = self.decoder(quant2, quant) | |
video = video.reshape( | |
b, | |
t * self.config.temporal_downsample_factor, | |
self.config.out_channels, | |
h * self.spatial_scale_factor, | |
w * self.spatial_scale_factor, | |
) | |
if ndim == 3: | |
return video[:, 0] | |
return video | |
def device(self): | |
return next(self.parameters()).device | |
def dtype(self): | |
return next(self.parameters()).dtype | |