Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 1,135 Bytes
2a5f9fb df66f6e 2a5f9fb be82687 5515631 2a5f9fb 5515631 2a5f9fb 4ff9eef 395eff6 0c7ef71 2a5f9fb 01e8b18 2a5f9fb df66f6e 2a5f9fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import os
from huggingface_hub import HfApi
# clone / pull the lmeh eval data
H4_TOKEN = os.environ.get("H4_TOKEN", None)
REPO_ID = "BAAI/open_cn_llm_leaderboard"
QUEUE_REPO = "open-cn-llm-leaderboard/requests"
DYNAMIC_INFO_REPO = "open-cn-llm-leaderboard/dynamic_model_information"
RESULTS_REPO = "open-cn-llm-leaderboard/results"
PRIVATE_QUEUE_REPO = "open-cn-llm-leaderboard/private-requests"
PRIVATE_RESULTS_REPO = "open-cn-llm-leaderboard/private-results"
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
CACHE_PATH=os.getenv("HF_HOME", ".")
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
DYNAMIC_INFO_PATH = os.path.join(CACHE_PATH, "dynamic-info")
DYNAMIC_INFO_FILE_PATH = os.path.join(DYNAMIC_INFO_PATH, "model_infos.json")
EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private"
EVAL_RESULTS_PATH_PRIVATE = "eval-results-private"
PATH_TO_COLLECTION = "open-cn-llm-leaderboard/chinese-llm-leaderboard-best-models"
# Rate limit variables
RATE_LIMIT_PERIOD = 7
RATE_LIMIT_QUOTA = 5
HAS_HIGHER_RATE_LIMIT = ["TheBloke"]
API = HfApi(token=H4_TOKEN)
|