Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Clémentine
commited on
Commit
·
9b2e755
1
Parent(s):
0c7ef71
simplified display, added an extra config repo to carry dynamic information
Browse files- app.py +30 -9
- src/display/utils.py +6 -6
- src/leaderboard/read_evals.py +8 -7
- src/scripts/update_all_request_files.py +33 -35
- src/submission/check_validity.py +1 -1
app.py
CHANGED
@@ -30,6 +30,7 @@ from src.display.utils import (
|
|
30 |
from src.envs import API, EVAL_REQUESTS_PATH, DYNAMIC_INFO_REPO, DYNAMIC_INFO_FILE_PATH, DYNAMIC_INFO_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO
|
31 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
32 |
from src.submission.submit import add_new_eval
|
|
|
33 |
from src.tools.collections import update_collections
|
34 |
from src.tools.plots import (
|
35 |
create_metric_plot_obj,
|
@@ -100,10 +101,11 @@ def update_table(
|
|
100 |
size_query: list,
|
101 |
show_deleted: bool,
|
102 |
show_merges: bool,
|
|
|
103 |
show_flagged: bool,
|
104 |
query: str,
|
105 |
):
|
106 |
-
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted, show_merges, show_flagged)
|
107 |
filtered_df = filter_queries(query, filtered_df)
|
108 |
df = select_columns(filtered_df, columns)
|
109 |
return df
|
@@ -119,13 +121,13 @@ def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
|
119 |
|
120 |
|
121 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
122 |
-
always_here_cols = [
|
123 |
-
|
124 |
-
AutoEvalColumn.
|
125 |
-
|
126 |
# We use COLS to maintain sorting
|
127 |
filtered_df = df[
|
128 |
-
always_here_cols + [c for c in COLS if c in df.columns and c in columns] +
|
129 |
]
|
130 |
return filtered_df
|
131 |
|
@@ -151,7 +153,7 @@ def filter_queries(query: str, filtered_df: pd.DataFrame):
|
|
151 |
|
152 |
|
153 |
def filter_models(
|
154 |
-
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
|
155 |
) -> pd.DataFrame:
|
156 |
# Show all models
|
157 |
if show_deleted:
|
@@ -162,6 +164,9 @@ def filter_models(
|
|
162 |
if not show_merges:
|
163 |
filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
|
164 |
|
|
|
|
|
|
|
165 |
if not show_flagged:
|
166 |
filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]
|
167 |
|
@@ -176,7 +181,16 @@ def filter_models(
|
|
176 |
|
177 |
return filtered_df
|
178 |
|
179 |
-
leaderboard_df = filter_models(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
demo = gr.Blocks(css=custom_css)
|
182 |
with demo:
|
@@ -216,6 +230,9 @@ with demo:
|
|
216 |
merged_models_visibility = gr.Checkbox(
|
217 |
value=False, label="Show merges", interactive=True
|
218 |
)
|
|
|
|
|
|
|
219 |
flagged_models_visibility = gr.Checkbox(
|
220 |
value=False, label="Show flagged models", interactive=True
|
221 |
)
|
@@ -274,6 +291,7 @@ with demo:
|
|
274 |
filter_columns_size,
|
275 |
deleted_models_visibility,
|
276 |
merged_models_visibility,
|
|
|
277 |
flagged_models_visibility,
|
278 |
search_bar,
|
279 |
],
|
@@ -292,6 +310,7 @@ with demo:
|
|
292 |
filter_columns_size,
|
293 |
deleted_models_visibility,
|
294 |
merged_models_visibility,
|
|
|
295 |
flagged_models_visibility,
|
296 |
search_bar,
|
297 |
],
|
@@ -300,7 +319,7 @@ with demo:
|
|
300 |
# Check query parameter once at startup and update search bar + hidden component
|
301 |
demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])
|
302 |
|
303 |
-
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility, merged_models_visibility, flagged_models_visibility]:
|
304 |
selector.change(
|
305 |
update_table,
|
306 |
[
|
@@ -311,6 +330,7 @@ with demo:
|
|
311 |
filter_columns_size,
|
312 |
deleted_models_visibility,
|
313 |
merged_models_visibility,
|
|
|
314 |
flagged_models_visibility,
|
315 |
search_bar,
|
316 |
],
|
@@ -439,6 +459,7 @@ with demo:
|
|
439 |
|
440 |
scheduler = BackgroundScheduler()
|
441 |
scheduler.add_job(restart_space, "interval", seconds=10800)
|
|
|
442 |
scheduler.start()
|
443 |
|
444 |
demo.queue(default_concurrency_limit=40).launch()
|
|
|
30 |
from src.envs import API, EVAL_REQUESTS_PATH, DYNAMIC_INFO_REPO, DYNAMIC_INFO_FILE_PATH, DYNAMIC_INFO_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO
|
31 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
32 |
from src.submission.submit import add_new_eval
|
33 |
+
from src.scripts.update_all_request_files import update_dynamic_files
|
34 |
from src.tools.collections import update_collections
|
35 |
from src.tools.plots import (
|
36 |
create_metric_plot_obj,
|
|
|
101 |
size_query: list,
|
102 |
show_deleted: bool,
|
103 |
show_merges: bool,
|
104 |
+
show_moe: bool,
|
105 |
show_flagged: bool,
|
106 |
query: str,
|
107 |
):
|
108 |
+
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted, show_merges, show_moe, show_flagged)
|
109 |
filtered_df = filter_queries(query, filtered_df)
|
110 |
df = select_columns(filtered_df, columns)
|
111 |
return df
|
|
|
121 |
|
122 |
|
123 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
124 |
+
always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
125 |
+
dummy_col = [AutoEvalColumn.dummy.name]
|
126 |
+
#AutoEvalColumn.model_type_symbol.name,
|
127 |
+
#AutoEvalColumn.model.name,
|
128 |
# We use COLS to maintain sorting
|
129 |
filtered_df = df[
|
130 |
+
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + dummy_col
|
131 |
]
|
132 |
return filtered_df
|
133 |
|
|
|
153 |
|
154 |
|
155 |
def filter_models(
|
156 |
+
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool, show_merges: bool, show_moe:bool, show_flagged: bool
|
157 |
) -> pd.DataFrame:
|
158 |
# Show all models
|
159 |
if show_deleted:
|
|
|
164 |
if not show_merges:
|
165 |
filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
|
166 |
|
167 |
+
if not show_moe:
|
168 |
+
filtered_df = filtered_df[filtered_df[AutoEvalColumn.moe.name] == False]
|
169 |
+
|
170 |
if not show_flagged:
|
171 |
filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]
|
172 |
|
|
|
181 |
|
182 |
return filtered_df
|
183 |
|
184 |
+
leaderboard_df = filter_models(
|
185 |
+
df=leaderboard_df,
|
186 |
+
type_query=[t.to_str(" : ") for t in ModelType],
|
187 |
+
size_query=list(NUMERIC_INTERVALS.keys()),
|
188 |
+
precision_query=[i.value.name for i in Precision],
|
189 |
+
show_deleted=False,
|
190 |
+
show_merges=False,
|
191 |
+
show_moe=True,
|
192 |
+
show_flagged=False
|
193 |
+
)
|
194 |
|
195 |
demo = gr.Blocks(css=custom_css)
|
196 |
with demo:
|
|
|
230 |
merged_models_visibility = gr.Checkbox(
|
231 |
value=False, label="Show merges", interactive=True
|
232 |
)
|
233 |
+
moe_models_visibility = gr.Checkbox(
|
234 |
+
value=True, label="Show MoE", interactive=True
|
235 |
+
)
|
236 |
flagged_models_visibility = gr.Checkbox(
|
237 |
value=False, label="Show flagged models", interactive=True
|
238 |
)
|
|
|
291 |
filter_columns_size,
|
292 |
deleted_models_visibility,
|
293 |
merged_models_visibility,
|
294 |
+
moe_models_visibility,
|
295 |
flagged_models_visibility,
|
296 |
search_bar,
|
297 |
],
|
|
|
310 |
filter_columns_size,
|
311 |
deleted_models_visibility,
|
312 |
merged_models_visibility,
|
313 |
+
moe_models_visibility,
|
314 |
flagged_models_visibility,
|
315 |
search_bar,
|
316 |
],
|
|
|
319 |
# Check query parameter once at startup and update search bar + hidden component
|
320 |
demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])
|
321 |
|
322 |
+
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility, merged_models_visibility, moe_models_visibility, flagged_models_visibility]:
|
323 |
selector.change(
|
324 |
update_table,
|
325 |
[
|
|
|
330 |
filter_columns_size,
|
331 |
deleted_models_visibility,
|
332 |
merged_models_visibility,
|
333 |
+
moe_models_visibility,
|
334 |
flagged_models_visibility,
|
335 |
search_bar,
|
336 |
],
|
|
|
459 |
|
460 |
scheduler = BackgroundScheduler()
|
461 |
scheduler.add_job(restart_space, "interval", seconds=10800)
|
462 |
+
scheduler.add_job(update_dynamic_files, "interval", seconds=10000) # taking about 3 min
|
463 |
scheduler.start()
|
464 |
|
465 |
demo.queue(default_concurrency_limit=40).launch()
|
src/display/utils.py
CHANGED
@@ -50,9 +50,10 @@ auto_eval_column_dict.append(["merged", ColumnContent, ColumnContent("Merged", "
|
|
50 |
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
51 |
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
52 |
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
53 |
-
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
54 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
55 |
-
auto_eval_column_dict.append(["flagged", ColumnContent, ColumnContent("Flagged", "bool", False,
|
|
|
56 |
# Dummy column for the search bar (hidden by the custom CSS)
|
57 |
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
|
58 |
|
@@ -108,6 +109,7 @@ human_baseline_row = {
|
|
108 |
AutoEvalColumn.gsm8k.name: 100,
|
109 |
AutoEvalColumn.dummy.name: "human_baseline",
|
110 |
AutoEvalColumn.model_type.name: "",
|
|
|
111 |
}
|
112 |
|
113 |
@dataclass
|
@@ -168,10 +170,8 @@ class Precision(Enum):
|
|
168 |
|
169 |
|
170 |
# Column selection
|
171 |
-
COLS = [c.name for c in fields(AutoEvalColumn)
|
172 |
-
TYPES = [c.type for c in fields(AutoEvalColumn)
|
173 |
-
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
174 |
-
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
175 |
|
176 |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
177 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
|
|
50 |
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
51 |
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
52 |
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
53 |
+
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, hidden=True)])
|
54 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
55 |
+
auto_eval_column_dict.append(["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)])
|
56 |
+
auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)])
|
57 |
# Dummy column for the search bar (hidden by the custom CSS)
|
58 |
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
|
59 |
|
|
|
109 |
AutoEvalColumn.gsm8k.name: 100,
|
110 |
AutoEvalColumn.dummy.name: "human_baseline",
|
111 |
AutoEvalColumn.model_type.name: "",
|
112 |
+
AutoEvalColumn.flagged.name: False,
|
113 |
}
|
114 |
|
115 |
@dataclass
|
|
|
170 |
|
171 |
|
172 |
# Column selection
|
173 |
+
COLS = [c.name for c in fields(AutoEvalColumn)]
|
174 |
+
TYPES = [c.type for c in fields(AutoEvalColumn)]
|
|
|
|
|
175 |
|
176 |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
177 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
src/leaderboard/read_evals.py
CHANGED
@@ -30,7 +30,7 @@ class EvalResult:
|
|
30 |
likes: int = 0
|
31 |
num_params: int = 0
|
32 |
date: str = "" # submission date of request file
|
33 |
-
still_on_hub: bool =
|
34 |
is_merge: bool = False
|
35 |
flagged: bool = False
|
36 |
tags: list = None
|
@@ -106,12 +106,12 @@ class EvalResult:
|
|
106 |
try:
|
107 |
with open(request_file, "r") as f:
|
108 |
request = json.load(f)
|
109 |
-
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
110 |
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
111 |
self.num_params = request.get("params", 0)
|
112 |
self.date = request.get("submitted_time", "")
|
113 |
-
self.architecture = request
|
114 |
-
except Exception:
|
115 |
print(f"Could not find request file for {self.org}/{self.model}")
|
116 |
|
117 |
def update_with_dynamic_file_dict(self, file_dict):
|
@@ -119,7 +119,6 @@ class EvalResult:
|
|
119 |
self.likes = file_dict.get("likes", 0)
|
120 |
self.still_on_hub = file_dict["still_on_hub"]
|
121 |
self.flagged = any("flagged" in tag for tag in file_dict["tags"])
|
122 |
-
self.is_merge = "merge" in file_dict["tags"]
|
123 |
self.tags = file_dict["tags"]
|
124 |
|
125 |
|
@@ -130,7 +129,6 @@ class EvalResult:
|
|
130 |
"eval_name": self.eval_name, # not a column, just a save name,
|
131 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
132 |
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
133 |
-
AutoEvalColumn.merged.name: self.is_merge,
|
134 |
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
135 |
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
136 |
AutoEvalColumn.architecture.name: self.architecture,
|
@@ -142,6 +140,8 @@ class EvalResult:
|
|
142 |
AutoEvalColumn.likes.name: self.likes,
|
143 |
AutoEvalColumn.params.name: self.num_params,
|
144 |
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
|
|
|
|
145 |
AutoEvalColumn.flagged.name: self.flagged
|
146 |
}
|
147 |
|
@@ -199,7 +199,8 @@ def get_raw_eval_results(results_path: str, requests_path: str, dynamic_path: st
|
|
199 |
# Creation of result
|
200 |
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
201 |
eval_result.update_with_request_file(requests_path)
|
202 |
-
eval_result.
|
|
|
203 |
|
204 |
# Store results of same eval together
|
205 |
eval_name = eval_result.eval_name
|
|
|
30 |
likes: int = 0
|
31 |
num_params: int = 0
|
32 |
date: str = "" # submission date of request file
|
33 |
+
still_on_hub: bool = True
|
34 |
is_merge: bool = False
|
35 |
flagged: bool = False
|
36 |
tags: list = None
|
|
|
106 |
try:
|
107 |
with open(request_file, "r") as f:
|
108 |
request = json.load(f)
|
109 |
+
self.model_type = ModelType.from_str(request.get("model_type", "Unknown"))
|
110 |
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
111 |
self.num_params = request.get("params", 0)
|
112 |
self.date = request.get("submitted_time", "")
|
113 |
+
self.architecture = request.get("architectures", "Unknown")
|
114 |
+
except Exception as e:
|
115 |
print(f"Could not find request file for {self.org}/{self.model}")
|
116 |
|
117 |
def update_with_dynamic_file_dict(self, file_dict):
|
|
|
119 |
self.likes = file_dict.get("likes", 0)
|
120 |
self.still_on_hub = file_dict["still_on_hub"]
|
121 |
self.flagged = any("flagged" in tag for tag in file_dict["tags"])
|
|
|
122 |
self.tags = file_dict["tags"]
|
123 |
|
124 |
|
|
|
129 |
"eval_name": self.eval_name, # not a column, just a save name,
|
130 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
131 |
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
|
|
132 |
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
133 |
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
134 |
AutoEvalColumn.architecture.name: self.architecture,
|
|
|
140 |
AutoEvalColumn.likes.name: self.likes,
|
141 |
AutoEvalColumn.params.name: self.num_params,
|
142 |
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
143 |
+
AutoEvalColumn.merged.name: "merge" in self.tags if self.tags else False,
|
144 |
+
AutoEvalColumn.moe.name: ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower(),
|
145 |
AutoEvalColumn.flagged.name: self.flagged
|
146 |
}
|
147 |
|
|
|
199 |
# Creation of result
|
200 |
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
201 |
eval_result.update_with_request_file(requests_path)
|
202 |
+
if eval_result.full_model in dynamic_data:
|
203 |
+
eval_result.update_with_dynamic_file_dict(dynamic_data[eval_result.full_model])
|
204 |
|
205 |
# Store results of same eval together
|
206 |
eval_name = eval_result.eval_name
|
src/scripts/update_all_request_files.py
CHANGED
@@ -1,31 +1,10 @@
|
|
1 |
-
from huggingface_hub import
|
2 |
from huggingface_hub import ModelCard
|
3 |
|
4 |
import json
|
5 |
-
import os
|
6 |
import time
|
7 |
-
import
|
8 |
-
from src.
|
9 |
-
from src.envs import DYNAMIC_INFO_REPO, DYNAMIC_INFO_FILE_PATH, API
|
10 |
-
|
11 |
-
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
12 |
-
|
13 |
-
TMP_FOLDER = "tmp_requests"
|
14 |
-
snapshot_download(
|
15 |
-
repo_id=DYNAMIC_INFO_REPO, local_dir=TMP_FOLDER, repo_type="dataset", tqdm_class=None, etag_timeout=30
|
16 |
-
)
|
17 |
-
|
18 |
-
# Get models
|
19 |
-
start = time.time()
|
20 |
-
|
21 |
-
models = list(API.list_models(
|
22 |
-
filter=ModelFilter(task="text-generation"),
|
23 |
-
full=False,
|
24 |
-
cardData=True,
|
25 |
-
fetch_config=True,
|
26 |
-
))
|
27 |
-
|
28 |
-
print(f"Downloaded list of models in {time.time() - start:.2f} seconds")
|
29 |
|
30 |
def update_models(file_path, models):
|
31 |
"""
|
@@ -80,18 +59,37 @@ def update_models(file_path, models):
|
|
80 |
with open(file_path, 'w') as f:
|
81 |
json.dump(model_infos, f, indent=2)
|
82 |
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
|
86 |
|
87 |
-
|
88 |
|
89 |
-
|
90 |
-
path_or_fileobj=DYNAMIC_INFO_FILE_PATH,
|
91 |
-
path_in_repo=DYNAMIC_INFO_FILE_PATH.split("/")[-1],
|
92 |
-
repo_id=DYNAMIC_INFO_REPO,
|
93 |
-
repo_type="dataset",
|
94 |
-
commit_message=f"Daily request file update.",
|
95 |
-
)
|
96 |
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import ModelFilter, snapshot_download
|
2 |
from huggingface_hub import ModelCard
|
3 |
|
4 |
import json
|
|
|
5 |
import time
|
6 |
+
from src.submission.check_validity import is_model_on_hub, check_model_card
|
7 |
+
from src.envs import DYNAMIC_INFO_REPO, DYNAMIC_INFO_PATH, DYNAMIC_INFO_FILE_PATH, API
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def update_models(file_path, models):
|
10 |
"""
|
|
|
59 |
with open(file_path, 'w') as f:
|
60 |
json.dump(model_infos, f, indent=2)
|
61 |
|
62 |
+
def update_dynamic_files():
|
63 |
+
""" This will only update metadata for models already linked in the repo, not add missing ones.
|
64 |
+
"""
|
65 |
+
snapshot_download(
|
66 |
+
repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
|
67 |
+
)
|
68 |
+
|
69 |
+
print("UPDATE_DYNAMIC: Loaded snapshot")
|
70 |
+
# Get models
|
71 |
+
start = time.time()
|
72 |
+
|
73 |
+
models = list(API.list_models(
|
74 |
+
filter=ModelFilter(task="text-generation"),
|
75 |
+
full=False,
|
76 |
+
cardData=True,
|
77 |
+
fetch_config=True,
|
78 |
+
))
|
79 |
+
|
80 |
+
print(f"UPDATE_DYNAMIC: Downloaded list of models in {time.time() - start:.2f} seconds")
|
81 |
|
82 |
+
start = time.time()
|
83 |
|
84 |
+
update_models(DYNAMIC_INFO_FILE_PATH, models)
|
85 |
|
86 |
+
print(f"UPDATE_DYNAMIC: updated in {time.time() - start:.2f} seconds")
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
API.upload_file(
|
89 |
+
path_or_fileobj=DYNAMIC_INFO_FILE_PATH,
|
90 |
+
path_in_repo=DYNAMIC_INFO_FILE_PATH.split("/")[-1],
|
91 |
+
repo_id=DYNAMIC_INFO_REPO,
|
92 |
+
repo_type="dataset",
|
93 |
+
commit_message=f"Daily request file update.",
|
94 |
+
)
|
95 |
+
print(f"UPDATE_DYNAMIC: pushed to hub")
|
src/submission/check_validity.py
CHANGED
@@ -52,7 +52,7 @@ def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_rem
|
|
52 |
return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
|
53 |
return True, None, config
|
54 |
|
55 |
-
except ValueError:
|
56 |
return (
|
57 |
False,
|
58 |
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
|
|
52 |
return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
|
53 |
return True, None, config
|
54 |
|
55 |
+
except ValueError as e:
|
56 |
return (
|
57 |
False,
|
58 |
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|