import os from huggingface_hub import HfApi # clone / pull the lmeh eval data H4_TOKEN = os.environ.get("H4_TOKEN", None) REPO_ID = "BAAI/open_cn_llm_leaderboard" QUEUE_REPO = "open_cn_llm_leaderboard/requests" DYNAMIC_INFO_REPO = "open_cn_llm_leaderboard/dynamic_model_information" RESULTS_REPO = "open_cn_llm_leaderboard/results" PRIVATE_QUEUE_REPO = "open_cn_llm_leaderboard/private-requests" PRIVATE_RESULTS_REPO = "open_cn_llm_leaderboard/private-results" IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True)) CACHE_PATH=os.getenv("HF_HOME", ".") EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue") EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results") DYNAMIC_INFO_PATH = os.path.join(CACHE_PATH, "dynamic-info") DYNAMIC_INFO_FILE_PATH = os.path.join(DYNAMIC_INFO_PATH, "model_infos.json") EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private" EVAL_RESULTS_PATH_PRIVATE = "eval-results-private" PATH_TO_COLLECTION = "open_cn_llm_leaderboard/llm-leaderboard-best-models-652d6c7965a4619fb5c27a03" # Rate limit variables RATE_LIMIT_PERIOD = 7 RATE_LIMIT_QUOTA = 5 HAS_HIGHER_RATE_LIMIT = ["TheBloke"] API = HfApi(token=H4_TOKEN)