File size: 18,218 Bytes
436c4c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
# Import necessary libraries
import nltk
import numpy as np
import torch
import matplotlib.pyplot as plt
from scipy.special import rel_entr
from collections import Counter
from transformers import GPT2LMHeadModel, GPT2TokenizerFast
distortion_val={}
# Download NLTK data if not already present
nltk.download('punkt', quiet=True)
class SentenceDistortionCalculator:
"""
A class to calculate and analyze distortion metrics between an original sentence and modified sentences.
"""
def __init__(self, original_sentence, modified_sentences):
"""
Initialize the calculator with the original sentence and a list of modified sentences.
"""
self.original_sentence = original_sentence
self.modified_sentences = modified_sentences
# Raw metric dictionaries
self.levenshtein_distances = {}
self.word_level_changes = {}
self.kl_divergences = {}
self.perplexities = {}
# Normalized metric dictionaries
self.normalized_levenshtein = {}
self.normalized_word_changes = {}
self.normalized_kl_divergences = {}
self.normalized_perplexities = {}
# Combined distortion dictionary
self.combined_distortions = {}
# Initialize GPT-2 model and tokenizer for perplexity calculation
self.tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
self.model = GPT2LMHeadModel.from_pretrained("gpt2")
self.model.eval() # Set model to evaluation mode
def calculate_all_metrics(self):
"""
Calculate all distortion metrics for each modified sentence.
"""
for idx, modified_sentence in enumerate(self.modified_sentences):
key = f"Sentence_{idx+1}"
self.levenshtein_distances[key] = self._calculate_levenshtein_distance(modified_sentence)
self.word_level_changes[key] = self._calculate_word_level_change(modified_sentence)
self.kl_divergences[key] = self._calculate_kl_divergence(modified_sentence)
self.perplexities[key] = self._calculate_perplexity(modified_sentence)
def normalize_metrics(self):
"""
Normalize all metrics to be between 0 and 1.
"""
self.normalized_levenshtein = self._normalize_dict(self.levenshtein_distances)
self.normalized_word_changes = self._normalize_dict(self.word_level_changes)
self.normalized_kl_divergences = self._normalize_dict(self.kl_divergences)
self.normalized_perplexities = self._normalize_dict(self.perplexities)
def calculate_combined_distortion(self):
"""
Calculate the combined distortion using the root mean square of the normalized metrics.
"""
for key in self.normalized_levenshtein.keys():
rms = np.sqrt(
(
self.normalized_levenshtein[key] ** 2 +
self.normalized_word_changes[key] ** 2 +
self.normalized_kl_divergences[key] ** 2 +
self.normalized_perplexities[key] ** 2
) / 4
)
self.combined_distortions[key] = rms
def plot_metrics(self):
"""
Plot each normalized metric and the combined distortion in separate graphs.
"""
import matplotlib.pyplot as plt
keys = list(self.normalized_levenshtein.keys())
indices = np.arange(len(keys))
# Prepare data for plotting
metrics = {
'Levenshtein Distance': [self.normalized_levenshtein[key] for key in keys],
'Word-Level Changes': [self.normalized_word_changes[key] for key in keys],
'KL Divergence': [self.normalized_kl_divergences[key] for key in keys],
'Perplexity': [self.normalized_perplexities[key] for key in keys],
'Combined Distortion': [self.combined_distortions[key] for key in keys]
}
# Plot each metric separately
for metric_name, values in metrics.items():
plt.figure(figsize=(12, 6))
plt.plot(indices, values, marker='o', color=np.random.rand(3,))
plt.xlabel('Sentence Index')
plt.ylabel('Normalized Value (0-1)')
plt.title(f'Normalized {metric_name}')
plt.grid(True)
plt.tight_layout()
plt.show()
# Private methods for metric calculations
def _calculate_levenshtein_distance(self, modified_sentence):
"""
Calculate the Levenshtein Distance between the original and modified sentence.
"""
return nltk.edit_distance(self.original_sentence, modified_sentence)
def _calculate_word_level_change(self, modified_sentence):
"""
Calculate the proportion of word-level changes between the original and modified sentence.
"""
original_words = self.original_sentence.split()
modified_words = modified_sentence.split()
total_words = max(len(original_words), len(modified_words))
changed_words = sum(1 for o, m in zip(original_words, modified_words) if o != m)
# Account for extra words in the modified sentence
changed_words += abs(len(original_words) - len(modified_words))
distortion = changed_words / total_words
return distortion
def _calculate_kl_divergence(self, modified_sentence):
"""
Calculate the KL Divergence between the word distributions of the original and modified sentence.
"""
original_counts = Counter(self.original_sentence.lower().split())
modified_counts = Counter(modified_sentence.lower().split())
all_words = set(original_counts.keys()).union(set(modified_counts.keys()))
original_probs = np.array([original_counts.get(word, 0) for word in all_words], dtype=float)
modified_probs = np.array([modified_counts.get(word, 0) for word in all_words], dtype=float)
# Add smoothing to avoid division by zero
original_probs += 1e-10
modified_probs += 1e-10
# Normalize to create probability distributions
original_probs /= original_probs.sum()
modified_probs /= modified_probs.sum()
kl_divergence = np.sum(rel_entr(original_probs, modified_probs))
return kl_divergence
def _calculate_perplexity(self, sentence):
"""
Calculate the perplexity of a sentence using GPT-2.
"""
encodings = self.tokenizer(sentence, return_tensors='pt')
max_length = self.model.config.n_positions
stride = max_length
lls = []
for i in range(0, encodings.input_ids.size(1), stride):
begin_loc = i
end_loc = min(i + stride, encodings.input_ids.size(1))
trg_len = end_loc - begin_loc
input_ids = encodings.input_ids[:, begin_loc:end_loc]
target_ids = input_ids.clone()
with torch.no_grad():
outputs = self.model(input_ids, labels=target_ids)
log_likelihood = outputs.loss * trg_len
lls.append(log_likelihood)
ppl = torch.exp(torch.stack(lls).sum() / end_loc)
return ppl.item()
def _normalize_dict(self, metric_dict):
"""
Normalize the values in a dictionary to be between 0 and 1.
"""
values = np.array(list(metric_dict.values()))
min_val = values.min()
max_val = values.max()
# Avoid division by zero if all values are the same
if max_val - min_val == 0:
normalized_values = np.zeros_like(values)
else:
normalized_values = (values - min_val) / (max_val - min_val)
return dict(zip(metric_dict.keys(), normalized_values))
# Getter methods
def get_normalized_metrics(self):
"""
Get all normalized metrics as a dictionary.
"""
return {
'Levenshtein Distance': self.normalized_levenshtein,
'Word-Level Changes': self.normalized_word_changes,
'KL Divergence': self.normalized_kl_divergences,
'Perplexity': self.normalized_perplexities
}
def get_combined_distortions(self):
"""
Get the dictionary of combined distortion values.
"""
return self.combined_distortions
# # Example usage
# if __name__ == "__main__":
# # Original sentence
# original_sentence = "The quick brown fox jumps over the lazy dog"
# paraphrased_sentences = [
# # Original 1: "A swift auburn fox leaps across a sleepy canine."
# "The swift auburn fox leaps across a sleepy canine.",
# "A quick auburn fox leaps across a sleepy canine.",
# "A swift ginger fox leaps across a sleepy canine.",
# "A swift auburn fox bounds across a sleepy canine.",
# "A swift auburn fox leaps across a tired canine.",
# "Three swift auburn foxes leap across a sleepy canine.",
# "The vulpine specimen rapidly traverses over a dormant dog.",
# "Like lightning, the russet hunter soars over the drowsy guardian.",
# "Tha quick ginger fox jumps o'er the lazy hound, ye ken.",
# "One rapid Vulpes vulpes traverses the path of a quiescent canine.",
# "A swift auburn predator navigates across a lethargic pet.",
# "Subject A (fox) demonstrates velocity over Subject B (dog).",
# # Original 2: "The agile russet fox bounds over an idle hound."
# "Some agile russet foxes bound over an idle hound.",
# "The nimble russet fox bounds over an idle hound.",
# "The agile brown fox bounds over an idle hound.",
# "The agile russet fox jumps over an idle hound.",
# "The agile russet fox bounds over a lazy hound.",
# "Two agile russet foxes bound over an idle hound.",
# "A dexterous vulpine surpasses a stationary canine.",
# "Quick as thought, the copper warrior sails over the guardian.",
# "Tha nimble reddish fox jumps o'er the doggo, don't ya know.",
# "A dexterous V. vulpes exceeds the plane of an inactive canine.",
# "An agile russet hunter maneuvers above a resting hound.",
# "Test subject F-1 achieves displacement superior to subject D-1.",
# # Original 3: "A nimble mahogany vulpine vaults above a drowsy dog."
# "The nimble mahogany vulpine vaults above a drowsy dog.",
# "A swift mahogany vulpine vaults above a drowsy dog.",
# "A nimble reddish vulpine vaults above a drowsy dog.",
# "A nimble mahogany fox vaults above a drowsy dog.",
# "A nimble mahogany vulpine leaps above a drowsy dog.",
# "Four nimble mahogany vulpines vault above a drowsy dog.",
# "An agile specimen of reddish fur surpasses a somnolent canine.",
# "Fleet as wind, the earth-toned hunter soars over the sleepy guard.",
# "Tha quick brown beastie jumps o'er the tired pup, aye.",
# "Single V. vulpes demonstrates vertical traverse over C. familiaris.",
# "A nimble rust-colored predator crosses above a drowsy pet.",
# "Observed: Subject Red executes vertical motion over Subject Gray.",
# # Original 4: "The speedy copper-colored fox hops over the lethargic pup."
# "A speedy copper-colored fox hops over the lethargic pup.",
# "The quick copper-colored fox hops over the lethargic pup.",
# "The speedy bronze fox hops over the lethargic pup.",
# "The speedy copper-colored fox jumps over the lethargic pup.",
# "The speedy copper-colored fox hops over the tired pup.",
# "Multiple speedy copper-colored foxes hop over the lethargic pup.",
# "A rapid vulpine of bronze hue traverses an inactive young canine.",
# "Swift as a dart, the metallic hunter bounds over the lazy puppy.",
# "Tha fast copper beastie leaps o'er the sleepy wee dog.",
# "1 rapid V. vulpes crosses above 1 juvenile C. familiaris.",
# "A fleet copper-toned predator moves past a sluggish young dog.",
# "Field note: Adult fox subject exceeds puppy subject vertically.",
# # Original 5: "A rapid tawny fox springs over a sluggish dog."
# "The rapid tawny fox springs over a sluggish dog.",
# "A quick tawny fox springs over a sluggish dog.",
# "A rapid golden fox springs over a sluggish dog.",
# "A rapid tawny fox jumps over a sluggish dog.",
# "A rapid tawny fox springs over a lazy dog.",
# "Six rapid tawny foxes spring over a sluggish dog.",
# "An expeditious yellowish vulpine surpasses a torpid canine.",
# "Fast as a bullet, the golden hunter vaults over the idle guard.",
# "Tha swift yellowy fox jumps o'er the lazy mutt, aye.",
# "One V. vulpes displays rapid transit over one inactive C. familiaris.",
# "A speedy yellow-brown predator bypasses a motionless dog.",
# "Log entry: Vulpine subject achieves swift vertical displacement.",
# # Original 6: "The fleet-footed chestnut fox soars above an indolent canine."
# "A fleet-footed chestnut fox soars above an indolent canine.",
# "The swift chestnut fox soars above an indolent canine.",
# "The fleet-footed brown fox soars above an indolent canine.",
# "The fleet-footed chestnut fox leaps above an indolent canine.",
# "The fleet-footed chestnut fox soars above a lazy canine.",
# "Several fleet-footed chestnut foxes soar above an indolent canine.",
# "A rapid brown vulpine specimen traverses a lethargic domestic dog.",
# "Graceful as a bird, the nutbrown hunter flies over the lazy guard.",
# "Tha quick brown beastie sails o'er the sleepy hound, ken.",
# "Single agile V. vulpes achieves elevation above stationary canine.",
# "A nimble brown predator glides over an unmoving domestic animal.",
# "Research note: Brown subject displays superior vertical mobility.",
# # Original 7: "A fast ginger fox hurdles past a slothful dog."
# "The fast ginger fox hurdles past a slothful dog.",
# "A quick ginger fox hurdles past a slothful dog.",
# "A fast red fox hurdles past a slothful dog.",
# "A fast ginger fox jumps past a slothful dog.",
# "A fast ginger fox hurdles past a lazy dog.",
# "Five fast ginger foxes hurdle past a slothful dog.",
# "A rapid orange vulpine bypasses a lethargic canine.",
# "Quick as lightning, the flame-colored hunter races past the lazy guard.",
# "Tha swift ginger beastie leaps past the tired doggy, ye see.",
# "1 rapid orange V. vulpes surpasses 1 inactive C. familiaris.",
# "A speedy red-orange predator overtakes a motionless dog.",
# "Data point: Orange subject demonstrates rapid transit past Gray subject.",
# # Original 8: "The spry rusty-colored fox jumps across a dozing hound."
# "A spry rusty-colored fox jumps across a dozing hound.",
# "The agile rusty-colored fox jumps across a dozing hound.",
# "The spry reddish fox jumps across a dozing hound.",
# "The spry rusty-colored fox leaps across a dozing hound.",
# "The spry rusty-colored fox jumps across a sleeping hound.",
# "Multiple spry rusty-colored foxes jump across a dozing hound.",
# "An agile rust-toned vulpine traverses a somnolent canine.",
# "Nimble as thought, the copper hunter bounds over the resting guard.",
# "Tha lively rust-colored beastie hops o'er the snoozin' hound.",
# "Single dexterous V. vulpes crosses path of dormant C. familiaris.",
# "A lithe rust-tinted predator moves past a slumbering dog.",
# "Observation: Russet subject exhibits agility over dormant subject.",
# # Original 9: "A quick tan fox leaps over an inactive dog."
# "The quick tan fox leaps over an inactive dog.",
# "A swift tan fox leaps over an inactive dog.",
# "A quick beige fox leaps over an inactive dog.",
# "A quick tan fox jumps over an inactive dog.",
# "A quick tan fox leaps over a motionless dog.",
# "Seven quick tan foxes leap over an inactive dog.",
# "A rapid light-brown vulpine surpasses a stationary canine.",
# "Fast as wind, the sand-colored hunter soars over the still guard.",
# "Tha nimble tan beastie jumps o'er the quiet doggy, aye.",
# "One agile fawn V. vulpes traverses one immobile C. familiaris.",
# "A fleet tan-colored predator bypasses an unmoving dog.",
# "Field report: Tan subject demonstrates movement over static subject.",
# # Original 10: "The brisk auburn vulpine bounces over a listless canine."
# "Some brisk auburn vulpines bounce over a listless canine.",
# "The quick auburn vulpine bounces over a listless canine.",
# "The brisk russet vulpine bounces over a listless canine.",
# "The brisk auburn fox bounces over a listless canine.",
# "The brisk auburn vulpine jumps over a listless canine.",
# "Five brisk auburn vulpines bounce over a listless canine.",
# "The expeditious specimen supersedes a quiescent Canis lupus.",
# "Swift as wind, the russet hunter vaults over the idle guardian.",
# "Tha quick ginger beastie hops o'er the lazy mutt, aye.",
# "One V. vulpes achieves displacement over inactive C. familiaris.",
# "A high-velocity auburn predator traverses an immobile animal.",
# "Final observation: Red subject shows mobility over Gray subject."
# ]
# # Initialize the calculator
# calculator = SentenceDistortionCalculator(original_sentence, paraphrased_sentences)
# # Calculate all metrics
# calculator.calculate_all_metrics()
# # Normalize the metrics
# calculator.normalize_metrics()
# # Calculate combined distortion
# calculator.calculate_combined_distortion()
# # Retrieve the normalized metrics and combined distortions
# normalized_metrics = calculator.get_normalized_metrics()
# combined_distortions = calculator.get_combined_distortions()
# distortion_val=combined_distortions
# # Display the results
# print("Normalized Metrics:")
# for metric_name, metric_dict in normalized_metrics.items():
# print(f"\n{metric_name}:")
# for key, value in metric_dict.items():
# print(f"{key}: {value:.4f}")
# print("\nCombined Distortions:")
# for key, value in combined_distortions.items():
# print(f"{key}: {value:.4f}")
# # Plot the metrics
# calculator.plot_metrics()
|