import torch import random from vocabulary_split import split_vocabulary, filter_logits # from transformers import AutoTokenizer, AutoModelForMaskedLM from masking_methods import tokenizer # Load tokenizer and model for masked language model # tokenizer = AutoTokenizer.from_pretrained("bert-large-cased-whole-word-masking") # model = AutoModelForMaskedLM.from_pretrained("bert-large-cased-whole-word-masking") # Get permissible vocabulary permissible, _ = split_vocabulary(seed=42) permissible_indices = torch.tensor([i in permissible.values() for i in range(len(tokenizer))]) def sample_word(sentence, words, logits, sampling_technique='inverse_transform', temperature=1.0): filtered_logits = filter_logits(torch.tensor(logits), permissible_indices) if sampling_technique == 'inverse_transform': probs = torch.softmax(filtered_logits / temperature, dim=-1) cumulative_probs = torch.cumsum(probs, dim=-1) random_prob = random.random() sampled_index = torch.where(cumulative_probs >= random_prob)[0][0] elif sampling_technique == 'exponential_minimum': probs = torch.softmax(filtered_logits / temperature, dim=-1) exp_probs = torch.exp(-torch.log(probs)) random_probs = torch.rand_like(exp_probs) sampled_index = torch.argmax(random_probs * exp_probs) elif sampling_technique == 'temperature': probs = torch.softmax(filtered_logits / temperature, dim=-1) sampled_index = torch.multinomial(probs, 1).item() elif sampling_technique == 'greedy': sampled_index = torch.argmax(filtered_logits).item() else: raise ValueError("Invalid sampling technique. Choose 'inverse_transform', 'exponential_minimum', 'temperature', or 'greedy'.") sampled_word = tokenizer.decode([sampled_index]) # Replace [MASK] with the sampled word filled_sentence = sentence.replace('[MASK]', sampled_word) return filled_sentence